微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133

在线阅读 收 藏

定价: 260元 / 折扣价: 221

在线阅读 收 藏

定价: 260元 / 折扣价: 221

在线阅读 收 藏

5.1 The procedures in these test methods should be used with caution for acceptance of commercial shipments owing to the absence of factual information on the between-laboratory precision of many of the test procedures included in these test methods. It is recommended that any program of acceptance testing be preceded by an interlaboratory check in the laboratory of the purchaser and the laboratory of the supplier on replicate specimens of the materials to be tested for each property (or properties) to be evaluated.5.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, test samples should be used that are as homogeneous as possible, that are drawn from the material from which the disparate test results were obtained, and that are randomly assigned in equal numbers to each laboratory for testing. Other materials with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results must be adjusted in consideration of the known bias.5.2 The significance and use of particular properties are discussed in the appropriate sections of specific test methods.1.1 These test methods cover the testing of industrial filament yarns made wholly of manufactured organic-base fibers, cords twisted from such yarns, fabrics woven from such cords, and products that are made specifically for use in the manufacture of pneumatic tires. They may be applied to similar yarns and cords used for reinforcing other rubber goods and for other industrial applications. The test methods apply to nylon, polyester, and rayon yarns and tire cords twisted from such yarns and to fabrics made from such cords. The yarn or cord may be wound on cones, tubes, bobbins, spools, or beams; may be woven into fabric; or may be in some other form. The methods include testing procedure only and include no specifications or tolerances.1.2 No procedure is included for the determination of fatigue resistance of cord, but several commonly used procedures for the measurement of fatigue resistance of cords in rubber were published in the appendix of these test methods in the 1967 Annual Book of ASTM Standards, Part 24, and in earlier issues of Test Methods D885.1.3 The sections on “Growth of Conditioned Yarns and Cords,” “Properties of Yarns and Cords at Elevated Temperature,” and “Properties of Wet Yarns and Cords” have been moved to Appendix X1 – Appendix X3 as non-mandatory informational items because of their very limited use by the industry and because precision and bias statements are not included.1.4 This standard includes the following sections:  SectionAdhesion of Cord to Elastomers 34Bibliography of Tire Cord Test Methods X5Breaking Strength (Force) of Yarns and Cords at Elevated Tempera- ture X2.3Breaking Strength (Force) of Conditioned Yarns and Cords 16Breaking Strength (Force) of Oven-Dried Rayon Yarns and Cords 23Breaking Strength (Force) of Rayon Yarns and Cords at Specified Moisture Regain Level, Adjustment of 17Breaking Tenacity of Conditioned Yarns and Cords 18Breaking Tenacity of Oven-Dried Rayon Yarns and Cords 24Breaking Toughness of Yarns and Cords 28Commercial Mass 9Conditioning 7Contraction of Wet Yarns and Cords X3Count of Tire Cord Fabric 37Dip (Adhesive) Solids Pickup on Yarns and Cords 33Elongation at Break of Conditioned Yarns and Cords 19Elongation at Break of Oven-Dried Rayon Yarns and Cords 25Elongation of Rayon Yarns and Cords at a Specified Moisture Regain Level, Adjustment of Observed 20Extractable Matter in Yarns and Cords 32Force at Specified Elongation (FASE) of Conditioned Yarns and Cords 21Force at Specified Elongation (FASE) of Oven-Dried Rayon Yarns and Cords 26Growth of Conditioned Yarns and Cords X1Identification of Fibers 8Keywords 40Linear Density 11Mass of per Unit Area of Tire Cord Fabric 36Modulus of Conditioned Yarns and Cords 22Moisture Regain, Actual 10Precision and Bias of Certain Yarn and Cord Tests 39  35 toProperties of Tire Cord Fabric 38Sampling 6Shrinkage Force of Conditioned Yarns and Cords at Elevated Temper- ature  X2.5Shrinkage of Conditioned Yarns and Cords at Elevated Temperature X2.4, General 5, Tensile Properties 14SI Calculations (examples for work-to-break, specific work-to-break, and breaking toughness)  X4Stiffness of Fabric 38  12 toTensile Properties of Yarns and Cords 28Terminology 3Thickness of Cords 31Twist in Yarns and Cords 30Width of Tire Cord Fabric 35Work-to-Break of Yarns and Cords 271.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is considered satisfactory for acceptance testing of commercial shipments because current estimates of between-laboratory precision are acceptable and the method is used extensively in the trade for acceptance testing.5.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, use samples for such comparative tests that are as homogeneous as possible, drawn from the same lot of material as the samples that resulted in disparate results during initial testing, and randomly assigned in equal numbers to each laboratory. The test results from the laboratories involved should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 Linear density of elastomeric yarns is used in some calculations for tensile and elastic properties.5.3 The test method is based on elastomeric yarns in lthe “as-produced” condition, but may be used for treated elastomeric yarns provided the treatment is specified. The method does not cover the removal of finish for the determination of linear density of “finish-free” elastomeric yarns.1.1 This test method covers the determination of the linear density of short lengths of “as produced” elastomeric yarns made from rubber, spandex or other elastomers.NOTE 1: For the determination of linear density of elastomeric yarns using skeins, refer to Test Method D6717.1.2 This test method is not applicable to covered, wrapped, or core-spun yarns, or yarns spun from elastomeric staple, or elastomeric yarns removed from fabrics.1.3 This test method is applicable to elastomeric yarns having a range of 40 to 3200 dtex (36 to 2900 denier).1.4 The values stated in either SI units or U.S. Customary units are to be regarded separately as standard. Within the test the US Customary units are in parentheses. The values stated in each system are not exact equivalents; therefore, each system shall be used independently of the other.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The procedures in these test methods may be used for the acceptance testing of commercial shipments, but caution is advised because technicians may fail to get good agreement between results on certain yarns, cords, or fabrics. Comparative tests as directed in Section 5.1.1 may be advisable.5.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, test samples should be used that are as homogeneous as possible, that are drawn from the material from which the disparate test results were obtained, and that are randomly assigned in equal numbers to each laboratory for testing. Other materials with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 The significance and use of particular properties are discussed in the appropriate sections of the specific test methods.1.1 These test methods cover the testing of industrial yarns made of glass filaments, cords twisted from such yarns, and fabric woven from such cords—products that are made specifically for use in the manufacture of pneumatic tires. By agreement, these test methods may be applied to similar glass yarns and cords used for reinforcing other rubber goods and for other industrial applications. The yarn or cord may be wound on cones, tubes, bobbins, spools, or beams, woven into fabric, or in other forms. These test methods include testing procedures only. These test methods do not include specifications or tolerances.1.2 No procedure is included for the determination of fatigue resistance of cords, but several articles relating to the measurement of fatigue resistance of cords made from man-made filaments and cured in rubber were published in the bibliography of Test Methods D885.1.3 The following sections are included:  SectionAdhesion of Cords to Elastomers 24Breaking Strength (Force) of Conditioned Yarns and Cords 13Breaking Tenacity of Conditioned Yarns and Cords 14Catenary Length of Cords Appendix X1Conditioning 8Construction of Yarns and Cords 18Count of Tire Cord Fabric 22Dip Pick-Up (DPU) on Yarns and Cords 23Elongation at Break of Conditioned Yarns and Cords 15Initial Modulus of Conditioned Yarns and Cords 16Keywords 28Mass of Tire Cord Fabric 22Precision and Bias 25 – 27Sampling of Yarn and Cord 6Sampling of Tire Cord Fabric 7Tensile Properties of Yarns and Cords 9 – 17Terminology 3Thickness of Cords 21Twist in Yarns and Cords 20Width of Tire Cord Fabric 22Yarn Number of Dipped Yarns and Cords 191.4 These test methods show the values in both SI units and in inch-pound units. “SI units” is the technically correct name for the system of metric units known as the International System of Units. “Inch-pound units” is the technically correct name for the customary units used in the United States. The values stated in either acceptable metric units or other units shall be regarded separately as standard. The values expressed in each system may not be exact equivalents; therefore, each system must be used independently of each other without combining values in any way.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 These test methods cover the testing of industrial yarns made of glass filaments, cords twisted from such yarns, and fabric woven from such cords-products that are made specifically for use in the manufacture of pneumatic tires. By agreement, these test methods may be applied to similar glass yarns and cords used for reinforcing other rubber goods and for other industrial applications. The yarn or cord may be wound on cones, tubes, bobbins, spools, or beams, woven into fabric, or in other forms. These test methods include specifications or tolerances.1.2 No procedure is included for the determination of fatigue resistance of cords, but several articles relating to the measurement of fatigue resistance of cords made from man-made filaments and cured in rubber were published in the bibliography of Test Methods D 885.1.3 The following sections are included: Adhesion of Cords to Elastomers (24); Breaking Strength (Force) of Conditioned Yarns and Cords (13); Breaking Tenacity of Conditioned Yarns and Cords (14); Catenary Length of Cords (Appendix X1); Conditioning (8); Construction of Yarns and Cords (18); Count of Tire Cord Fabric (22); Dip Pick-Up (DPU) on Yarns and Cords (23); Elongation at Break of Conditioned Yarns and Cords (15); Initial Modulus of Conditioned Yarns and Cords (16); Keywords (28); Mass of Tire Cord Fabric (22); Precision and Bias (25-27); Sampling of Yarn and Cord (6); Sampling of Tire Cord Fabric (7); Tensile Properties of Yarns and Cords (9-17); Terminology (3); Thickness of Cords (21); Twist in Yarns and Cords (20); Width of Tire Cord Fabric (22); Yarn Number of Dipped Yarns and Cords (19).1.4 These test methods show the values in both SI units and in inch-pound units. "SI units" is the technically correct name for the system of metric units known as the International System of Units. "Inch-pound units" is the technically correct name for the customary units used in the United States. The values state in either acceptable metric units or other units shall be regarded separately as standard. The values expressed in each system may not be exact equivalents; therefore, each system must be used independently of each other without combining values in any way.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Option 1 of this test method is for the determination of the degree of filament yarn entanglement, as measured instrumentally. It is used for acceptance testing of commercial shipments; however, caution is advised because information on between-laboratory precision is lacking. Comparative tests, as directed in 5.1.1, may be advisable.5.1.1 If there are differences of practical significance between the reported test results for two or more laboratories, comparative tests should be performed by those laboratories to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, samples used for each comparative test should be as homogeneous as possible, drawn from the same lot of material as the samples that results in disparate results during initial testing, and randomly assigned in equal numbers to each laboratory. Other fabrics with established test values may be used for this purpose. The test results from the laboratories involved should be compared statistically. If a bias is found, either its cause must be found and corrected or future test results must be adjusted in consideration of the known bias.5.2 Option 2 for this test method is intended for use when the supply of yarn is limited.5.3 The instrumental option of this test method, Option 1, is based on the total randomization of the entanglements in the yarn; therefore, the distance measured between the point of insertion of a pin in the middle of the yarn and the point at which an entanglement is encountered, by movement of the yarn or the pin until it is stopped at a preset level of force, is representative of the distance between two entanglements at some location in the yarn.5.4 Entanglements are used frequently instead of twist to ensure the integrity of filament yarns. Such entanglements generally give somewhat less protection during weaving or knitting than twist, but with proper care, will perform quite satisfactorily.1.1 This test method covers two options for the measurement of entanglements in filament yarns using needle insertion options for instrument (Option 1) (Option 2) techniques.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The tex system has been approved for general use by the International Organization for Standardization, Technical Committee 38 on Textiles (ISO/TC 38), which has also recommended a list of rounded tex numbers for use with fibers and all types of yarns. Conversion tables showing the rounded tex numbers corresponding to various numbers in different traditional systems are given in Tables D2260 and ISO 2947.4.2 The tex system for designation of the linear density of fibers and yarns is a direct system based on mass per unit length, M/L, and employs metric units of length and mass. The tex unit, grams per kilometre (1000 m) has been approved by ISO/TC 38 for use with all fibers and all types of yarn. The committee has also approved the use of kilotex and decatex numbers for coarse structures and decitex and millitex numbers for fibers.4.3 The tex system relates to the property commonly associated with coarseness, or inverse fineness of a yarn because the tex numbers increase with an increase in the size or mass per unit length of the yarn. The tex system is intended for use by all branches of the textile industry, in all countries, for yarns made from all types of fibers or mixtures of fibers.1.1 This practice covers the use of the tex system to designate the linear density (number, or count) of fibers and of yarns made from any type of fiber or combination of fibers. It is also applicable to other textile materials, including yarn intermediates (slivers, rovings, tops, and so forth), single or plied yarns, cords, and threads.NOTE 1: The mass per unit length concept of linear density is applicable to any material which has a high ratio of length to cross section.1.2 Conversion factors for various indirect and direct yarn numbers to exact tex equivalents can be found in Standard Tables D2260.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method covers the determination of the resistance to slippage of filling yarns over warp yarns, or warp yarns over filling yarns, using a standard seam.1.2 This test method is not intended for upholstery fabrics.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is considered satisfactory for acceptance testing of commercial shipments because current estimates of between-laboratory precision are acceptable and the method is used extensively in the trade for acceptance testing.5.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, use samples for such comparative tests that are as homogeneous as possible, drawn from the same lot of material as the samples that resulted in disparate results during initial testing, and randomly assigned in equal numbers to each laboratory. The test results from the laboratories involved should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 Linear density of elastomeric yarns is used in some calculations for tensile and elastic properties.5.3 The test method is based on elastomeric yarns in the as-produced condition, but may be used for treated elastomeric yarns provided the treatment is specified. The method does not cover the removal of finish for the determination of linear density of “finish-free” elastomeric yarns.1.1 This test method covers the determination of the linear density of “as produced” elastomeric yarns made from rubber, spandex or other elastomers using a skein.NOTE 1: For the determination of linear density of elastomeric yarns using short length specimens, refer to Test Method D2591.1.2 The method is not applicable to covered, wrapped, or core-spun yarns, or yarns spun from elastomeric staple, or elastomeric yarns removed from fabrics.1.3 This test method is applicable to elastomeric yarns having a range of 40 to 3200 dtex (36 to 2900 denier).1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is considered satisfactory for acceptance testing of commercial shipments because current estimates of between-laboratory precision are acceptable and the method is used extensively in the trade for acceptance testing.5.1.1 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, use samples for such comparative tests that are as homogeneous as possible, drawn from the same lot of material as the samples that resulted in disparate results during initial testing, and randomly assigned in equal numbers to each laboratory. The test results from the laboratories involved should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If bias is found, either its cause must be found and corrected, or future test results for that material must be adjusted in consideration of the known bias.5.2 This test differs from other crimp contraction test methods in that it measures the recoverable stretch during the unload cycle of the yarn.1.1 This test method covers the determination of the recoverable stretch of commercial textured yarns, covered elastomeric yarns and other stretch yarns using skeins. This test method is particularly valuable for yarns that develop additional crimp upon exposure to hot, wet conditions. The recoverable stretch is a relative measure of the recovery power the yarn can be expected to provide in a finished fabric.1.2 This test method is applicable to continuous filament yarns and is suitable for yarns that develop additional stretch potential upon exposure to heat.1.3 This method is applicable to yarns 500 denier or finer.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are provided for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The levels of tensile properties obtained when testing aramid yarns and cords are dependent on the age and history of the specimen and on the specific conditions used during the test. Among these conditions are rate of stretching, type of clamps, gauge length of specimen, temperature and humidity of the atmosphere, rate of airflow across the specimen, and temperature and moisture content of the specimen. Testing conditions accordingly are specified precisely to obtain reproducible test results on a specific sample.5.2 Because the force-bearing ability of a reinforced product is related to the strength of the yarn or cord used as a reinforcing material, breaking force is used in engineering calculations when designing various types of textile reinforced products. When needed to compare intrinsic strength characteristics of yarns or cords of different sizes or different types of fiber, breaking tenacity is very useful because, for a given type of fiber, breaking force is approximately proportional to linear density.5.3 Elongation of yarn or cord is taken into consideration in the design and engineering of reinforced products because of its effect on uniformity of the finished product and its dimensional stability during service.5.4 The FASE is used to monitor changes in characteristics of the textile material during the various stages involved in the processing and incorporation of yarn or cord into a product.5.5 Modulus is a measure of the resistance of yarn or cord to extension as a force is applied. It is useful for estimating the response of a textile reinforced structure to the application of varying forces and rates of stretching. Although modulus may be determined at any specified force, initial modulus is the value most commonly used.5.6 Work-to-break is dependent on the relationship of force to elongation. It is a measure of the ability of a textile structure to absorb mechanical energy. Breaking toughness is work-to-break per unit mass.5.7 It should be emphasized that, although the preceding parameters are related to the performance of a textile-reinforced product, the actual configuration of the product is significant. Shape, size, and internal construction also can have appreciable effect on product performance. It is not possible, therefore, to evaluate the performance of a textile reinforced product in terms of the reinforcing material alone.5.8 If there are differences of practical significance between reported test results for two laboratories (or more), comparative tests should be performed to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, test samples should be used that are as homogeneous as possible, that are drawn from the material from which the disparate test results were obtained, and that are randomly assigned in equal numbers to each laboratory for testing. Other materials with established test values may be used for this purpose. The test results from the two laboratories should be compared using a statistical test for unpaired data, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results must be adjusted in consideration of the known bias.1.1 These test methods cover the tensile testing of aramid yarns, cords twisted from such yarns, and fabrics woven from such cords. The yarn or cord may be wound on cones, tubes, bobbins, spools, or beams; may be woven into fabric; or may be in some other form. The methods include testing procedure only and include no specifications or tolerances.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard includes the following test methods:  SectionBreaking Force 11Breaking Tenacity 12Breaking Toughness 17Elongation at Break 13Force at Specified Elongation (FASE) 14Linear Density 10Modulus 15Stress at Break 12Work-to-Break 161.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 1011元 / 折扣价: 860 加购物车

在线阅读 收 藏

1.1 These tolerances are applicable to all yarns 59 tex (10.00/1 cotton count) or coarser spun of man-made fiber(s), 4.5 to 30.0 dtex/filament, (4 to 25 denier/filament) and spun on the parallel worsted or modified worsted system. These tolerances do not apply to novelty or fancy yarns spun on the parallel worsted or modified worsted system. Note 1-For tolerances for other spun yarns, see Tolerances D2644, Tolerances D2645, Specification D541, and Specification D681. 1.2 The values stated in SI units are to be regarded as standard; the values in inch-pound units are provided as information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
41 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页