微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
AS 2192-2002 Sterilizers - Steam - Downward-displacement 被代替 发布日期 :  2002-07-25 实施日期 : 

定价: 975元 / 折扣价: 829 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

3.1 The force and displacement values when converted to a slope are useful in quantifying the differences in tactile response among membrane switches.3.2 Specified resistance is useful to manufacturers and users when designing membrane switch interface circuitry.3.3 Actuation force and contact force are useful to manufacturers and users in determining the suitability, reference and aesthetics of a membrane switch in a given application.3.4 The tendency of a switch to make or break electrical contact at unexpected moments during closure or release can be a sign of a poor design. The degree of teasing can range from a simple annoyance to a failure of critical control process.3.5 The amount of switch sensitivity or teasing can also be a result of poor surface conductivity that will prevent an electrical event even when switch poles are in partial contact.1.1 This test method covers the measurement of force displacement characteristics of a membrane switch.1.1.1 This test method replaces Test Method F1570 (Tactile Ratio). Tactile Actuating Slope Angle and Tactile Recovery Slope Angle better represent the characterization of tactile sensation, previously called “Tactile Ratio” in Test Method F1570.1.1.2 This test method replaces Test Method F1682 (Travel).1.1.3 This test method replaces Test Method F1597 (Actuation and Contact Force).1.1.4 This test method replaces Test Method F1997 (Switch Sensitivity).1.2 Force displacement hysterisis loop curve can be used in the determination of Actuation Force, Displacement, Contact Force, Return Force, and Tactile Actuating Slope Angle and Tactile Recovery Slope Angle.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Testing machines that apply and measure displacement are used in many industries. They may be used in research laboratories to determine material properties, and in production lines to qualify products for shipment. The displacement measuring devices integral to the testing machines may be used for measurement of crosshead or actuator displacement over a defined range of operation. The accuracy of the displacement value shall be traceable to the National Institute of Standards and Technology (NIST) or another recognized National Laboratory. Practices E2309 provides a procedure to verify these machines and systems, in order that the measured displacement values may be traceable. A key element to having traceability is that the devices used in the verification produce known displacement characteristics, and have been calibrated in accordance with adequate calibration standards.1.1 These practices cover procedures and requirements for the calibration and verification of displacement measuring systems by means of standard calibration devices for static and quasi-static testing machines. This practice is not intended to be complete purchase specifications for testing machines or displacement measuring systems. Displacement measuring systems are not intended to be used for the determination of strain. See Practice E83.1.2 These procedures apply to the verification of the displacement measuring systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the displacement-measuring system(s) to be verified.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 Displacement values indicated on displays/printouts of testing machine data systems—be they instantaneous, delayed, stored, or retransmitted—which are within the Classification criteria listed in Table 1, comply with Practices E2309/E2309M.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The specific gravity of soil solids is used in calculating the phase relationships of soils, such as void ratio and degree of saturation.5.1.1 The specific gravity of soil solids is used to calculate the density of the soil solids. This is done by multiplying the specific gravity by the density of water at 20°C. The soil solids density is nearly independent of temperature.5.2 The term soil solids is typically assumed to mean naturally occurring mineral particles or soil like particles that are not readily soluble in water. Therefore, the specific gravity of soil solids containing extraneous matter, such as cement, lime, and the like, water-soluble matter, such as sodium chloride, and soils containing matter with a specific gravity less than one, typically require special treatment (see Note 2) or a qualified definition of their specific gravity.NOTE 2: For some soils containing a significant fraction of organic matter, kerosene is a better wetting agent than water and may be used in place of test water for oven-dried specimens. Kerosene is a flammable liquid that must be used with extreme caution. This standard should not be used when using kerosene as the test fluid.5.3 The balances, pycnometer sizes, and specimen masses are specified to obtain test results reportable to four significant digits.NOTE 3: The quality of the result produced by these test methods is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of these test methods are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.AbstractThese test methods cover the determination of the specific gravity of soil solids passing a sieve by means of a water pycnometer. Soil solids for these test methods do not include solids which can be altered by these methods, contaminated with a substance that prohibits the use of these methods, or are highly organic soil solids, such as fibrous matter which floats in water. Procedures for moist specimens such as organic soils, highly plastic fine grained soils, tropical soils, and soils containing halloysite and oven-dry specimens are provided. The apparatus is comprised of water pycnometer which shall be a stoppered flask, stoppered iodine flask, or volumetric flask; balance; drying oven; thermometer; dessicator; a system for entrapped air removal which shall be a hot plate or Bunsen burner or a vacuum pump or water aspirator; insulated container; non-corrosive smooth surface funnel; pycnometer filling tube with lateral vents; sieve; and blender with mixing blades. The specific gravity of the soil solids at the test temperature shall be calculated from the density of the soil solids and the density of water at the test temperature or from the mass of the oven dry soil solids; mass of pycnometer, water, and soil solids at the test temperature; and mass of the pycnometer and water at the test temperature. Precision and bias shall be determined to judge for the acceptability of the test results.1.1 These test methods cover the determination of the specific gravity of soil solids that pass the 3/8-in. (9.5-mm) or smaller sieve by means of the water displacement method. When the total sample contains larger particles, it is separated into a coarser and finer portion using a 3/8-in. (9.5-mm) or No. 4 (4.75-mm) or finer sieve. Separation on the No. 4 sieve is the referee method. Test Method C127 shall be used to obtain the specific gravity of the coarser portion. The D854 test methods shall be used to obtain the specific gravity of the finer portion. The total sample specific gravity is computed from the two portions as described in 12.5.1.1.1 These test methods do not apply to solids which can be altered by these methods, contaminated with a substance that prohibits the use of these methods, or are highly organic, such as fibrous matter which floats in water (see Note 1).NOTE 1: Test Method D5550 may be used to determine the specific gravity of soil solids having solids, which readily dissolve in water or float in water, or where it is impracticable to use water.1.2 This standard provides two methods for performing the specific gravity test. The method to be used shall be specified by the requesting authority, except when testing the types of soils listed in 1.2.1.1.2.1 Method A—Procedure for Moist Specimens, described in 11.1. This procedure is the preferred method. Method A shall be used for organic soils; highly plastic, fine-grained soils; tropical soils; and soils containing halloysite.1.2.2 Method B—Procedure for Oven-Dry Specimens, described in 11.2. This procedure requires less time and may be used for clean sands.1.3 Units—The values stated in SI units are to be regarded as standard, except the sieve designations. The sieve designations are identified using the “alternative” system in accordance with Practice E11, such as 3-in. and No. 200, instead of the “standard” designation of 75-mm and 75-µm, respectively. Reporting of test results in units other than SI shall not be regarded as non-conformance with this test method. The use of balances or scales recording pounds of mass (lbm) shall not be regarded as nonconformance with this standard.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.1.4.1 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering design.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Glassware under vacuum has the potential for implosion. Proper personal protective equipment shall be used at all times. See Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the design and construction requirements of rotary positive displacement distillate fuel pumps intended for use in shipboard. Pumps covered by this specification are of Types II, III, IV, V, VIII, X, and XI and of sizes A-H. The pump shall be manufactured capable of sustaining operation in any direction up to a certain inclination, shall withstand environmental vibration induced by shipboard machinery and equipment, shall be driven by an electric motor, and besides distillate fuel, the pump shall also be used to pump aviation turbine fuel. Performance acceptance tests shall be performed, including mechanical running test, noise test, and hydrostatic test, and shall conform to the requirements specified.1.1 This specification covers the requirements applicable to the design and construction of rotary positive displacement distillate fuel pumps for shipboard use.1.2 Lineal dimensions and units of force in this specification are expressed as inches and pounds respectively. A companion metric standard is in the process of preparation.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The density of petroleum coke directly influences the physical and chemical properties of the manufactured carbon and graphite artifacts for which it is used. Density, therefore, is a major quality specification of calcined petroleum coke and is used as a control in coke calcination.1.1 This test method covers the determination of the real density (RD) of calcined petroleum coke. Real density, by definition, is obtained when the particle size of the test specimen is smaller than 75 μm (No. 200 sieve).1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Sections 10 and 11.1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The specific gravity or density of a solid is a property that is conveniently measured to identify a material, to follow physical changes in a sample, to indicate degree of uniformity among different sampling units or specimens, or to indicate the average density of a large item.5.2 Changes in density of a single material are due to localized differences in crystallinity, loss of plasticizer, absorption of solvent, or to other causes. It is possible that portions of a sample differ in density because of their differences in crystallinity, thermal history, porosity, and composition (types or proportions of resin, plasticizer, pigment, or filler).5.3 Density is useful for calculating strength-weight and cost-weight ratios.1.1 These test methods describe the determination of the specific gravity (relative density) and density of solid plastics in forms such as sheets, rods, tubes, or molded items.1.2 Two test methods are described:1.2.1 Test Method A—For testing solid plastics in water, and1.2.2 Test Method B—For testing solid plastics in liquids other than water.1.3 The values stated in SI units are to be regarded as the standard.1.4 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This standard is not equivalent to ISO 1183–1 Method A. This test method provides more guidelines on sample weight and dimension. ISO 1183-1 allows testing at an additional temperature of 27 ± 2°C.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Electrical insulating liquids, in many applications, require low gas content. This is the case with capacitors and certain types of cable, for example. This test is used as a factory control test and as a control and functional test in installation and maintenance work by utilities. This test requires care in manipulation and trained, careful personnel.FIG. 1 Semimicro Apparatus for Determination of Gas Content of Insulating Liquids1.1 This test method describes the determination of the gas content of electrical insulating liquids with a viscosity of 216 cSt or less at 100°C. Any gas that is nonreactive with a strong caustic solution may be determined.Note 1—The test method has a bias for samples containing gases other than oxygen and nitrogen in atmospheric ratios due to differential solubility effects. Gases which react with KOH such as carbon dioxide will not be measured. Unsaturated hydrocarbons such as acetylene, if present, will react with KOH to a small degree and will result in an underestimation of the total gas present.1.2 Warning—Mercury has been designated by EPA and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA’s website (http://www.epa.gov/mercury/faq.htm) for additional information. Users should be aware that selling mercury or mercury-containing products, or both, in your state may be prohibited by state law.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification provides the minimum requirements for the design, fabrication, pressure rating, marking, and testing for fuel oil meters (volumetric positive displacement type). The components of the meter shall be the following: housing, measuring chamber, adjusting device, direction marker, and register. Meter properties such as capacity, pressure drop, normal flow error, and maintainability shall be determined. Meters shall have all burrs or sharp edges removed and shall be cleaned of all loose metal chips and other foreign substances. A representative fuel oil meter shall undergo calibration and adjustment and hydrostatic test.1.1 This specification provides the minimum requirements for the design, fabrication, pressure rating, marking, and testing for fuel oil meters (volumetric positive displacement type).1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The following safety hazards caveat pertains only to the test method section of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Cyanide and hydrogen cyanide are highly toxic. Regulations have been established to require the monitoring of cyanide in industrial and domestic wastes and surface waters.35.2 This test method is applicable for natural water, saline waters, metallurgical process solutions, and wastewater effluent.5.3 The method may be used for process control in wastewater treatment facilities.1.1 This test method is used to determine the concentration of available inorganic cyanide in an aqueous wastewater or effluent. The method detects the cyanides that are free (HCN and CN-) and metal-cyanide complexes that are easily dissociated into free cyanide ions. The method does not detect the less toxic strong metal-cyanide complexes, cyanides that are not “amenable to chlorination.”1.2 Total cyanide can be determined for samples that have been distilled as described in Test Methods D2036, Test Method A, Total Cyanides after Distillation. The cyanide complexes are dissociated and absorbed into the sodium hydroxide capture solution, which can be analyzed with this test method; therefore, ligand exchange reagents from 8.12 and 8.13 would not be required when determining total cyanide after distillation.1.3 This procedure is applicable over a range of approximately 2 μg/L to 400 μg/L (parts per billion) available cyanides. Higher concentrations can be analyzed by dilution or lower injection volume.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in 8.6 and Section 9.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides data on classifying polymer-modified bituminous membranes by their performance related to the fatigue conditions to which they are subjected.5.2 This test method is applicable to testing specimens consisting of a single ply of the polymer-modified bitumen material or a multiple-ply composite that includes the polymer-modified bitumen material.5.3 This test method is conducted on both unaged and heat-aged specimens to determine the effect of heat exposure on the membrane material's ability to resist deterioration from cyclic strain. This test method may also be conducted on specimens subjected to other laboratory exposure conditions that are not specified herein.1.1 This test method determines the effect of constant cyclic displacement on polymer-modified bituminous membrane specimens. In this test method, a relatively low travel rate of cycling is used and the material is tested for a specified number of cycles under conditions of increased amplitude or lower temperature.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This practice was written primarily to guide test participants in establishing, identifying, maintaining, and using suitable environments for conducting high quality neutron tests. Its development was motivated, in large measure, because inadequate controls in the neutron-effects-test process have, in some past instances, resulted in exposures that have differed by factors of three or more from irradiation specifications. A radiation test environment generally differs from the environment in which the electronics must operate (the operational environment); therefore, a high quality test requires not only the use of a suitable radiation environment, but also control and compensation for contributions to damage that differ from those in the operational environment. In general, the responsibility for identifying suitable test environments to accomplish test objectives lies with the sponsor/user/tester and test specialist part of the team, with the assistance of an independent validator, if available. The responsibility for the establishment and maintenance of suitable environments lies with the facility operator/dosimetrist and test specialist, again with the possible assistance of an independent validator. Additional guidance on the selection of an irradiation facility is provided in Practice F1190.4.2 This practice identifies the tasks that must be accomplished to ensure a successful high quality test. It is the overall responsibility of the sponsor or user to ensure that all of the required tasks are complete and conditions are met. Other participants provide appropriate documentation to enable the sponsor or user to make that determination.4.3 The principal determinants of a properly conducted test are: (1) the radiation test environment shall be well characterized, controlled, and correlated with the specified irradiation levels; (2) damage produced in the electronic materials and devices is caused by the desired, specified component of the environment and can be reproduced at any other suitable facility; and (3) the damage corresponding to the specification level derived from radiation environments in which the electronics must operate can be predicted from the damage produced by the test environment. In order to ensure that these requirements are met, system developers, procurers, users, facility operators, and test personnel must collectively meet all of the essential requirements and effectively communicate to each other the tasks that must be accomplished and the conditions that must be met. Criteria for determining and maintaining the suitability of neutron radiation environments for 1-MeV equivalent displacement damage testing of electronics parts are presented in Section 5. Mandatory requirements for test consistency in neutron displacement damage testing of electronic parts are presented in Section 5. Additional background material on neutron testing and important considerations for gamma dose and dose rate effects are presented in (non-mandatory) Appendix X1 and Appendix X2, but compliance is not required.4.4 Some neutron tests are performed with a specific end application for the electronics in mind. Others are performed merely to ensure that a 1-MeV-equivalent-displacement-damage-specification level is met. The issues and controls presented in this practice are necessary and sufficient to ensure consistency in the latter case. They are necessary, but may not be sufficient, when the objective is to determine device performance in an operational environment. In either case, a corollary consistency requirement is that test results obtained at a suitable facility can be replicated within suitable precision at any other suitable facility.4.4.1 An objective of radiation effects testing of electronic devices is often to predict device performance in operational environments from the data that is obtained in the test environments. If the operational and test environments differ materially from each other, then damage equivalence methodologies are required in order to make the required correspondences. This process is shown schematically in Fig. 1. The part of the process (A, in Fig. 1) that establishes the operational neutron environments required to select the appropriate 1-MeV-equivalent specification level, or levels, is beyond the scope of this practice. However, if a neutron spectrum is used to set a 1 MeV equivalent fluence specification level, it is important that the process (B, in Fig. 1) be consistent with this practice. Damage equivalence methodologies must address all of the important contributors to damage in the operational and test environments or the objectives of the test may not be met. In the mixed neutron-gamma radiation fields produced by nuclear reactors, most of the permanent damage in solid-state semiconductor devices results from displacement damage produced by fast neutrons through primary knock-on atoms and their associated damage cascades. The same damage functions must be used by all test participants to ensure damage equivalence. Damage functions for silicon and gallium arsenide are provided in the current edition of Practice E722 (see Note 1). At present, no damage equivalence methodologies for neutron displacement damage have been developed and validated for semiconductors other than silicon and gallium arsenide.FIG. 1 Process for Damage EquivalenceNOTE 1: When comparing test specifications and test results from data obtained in historical tests, it may be necessary to adjust specifications and test data to account for changes in damage functions which have evolved through the years as more accurate and reliable damage functions have become available.4.4.2 If a 1-MeV equivalent neutron fluence specification, or a neutron spectrum, is provided, the damage equivalence methodology, shown schematically in Fig. 1, is used to ensure that the correct neutron fluence is provided and that the damage in devices placed in the exposure position correlates with the displacement energy from the neutrons at that location.1.1 This practice sets forth requirements to ensure consistency in neutron-induced displacement damage testing of silicon and gallium arsenide electronic piece parts. This requires controls on facility, dosimetry, tester, and communications processes that affect the accuracy and reproducibility of these tests. It provides background information on the technical basis for the requirements and additional recommendations on neutron testing.1.2 Methods are presented for ensuring and validating consistency in neutron displacement damage testing of electronic parts such as integrated circuits, transistors, and diodes. The issues identified and the controls set forth in this practice address the characterization and suitability of the radiation environments. They generally apply to reactor sources, accelerator-based neutron sources, such as 14-MeV DT sources, and 252Cf sources. Facility and environment characteristics that introduce complications or problems are identified, and recommendations are offered to recognize, minimize or eliminate these problems. This practice may be used by facility users, test personnel, facility operators, and independent process validators to determine the suitability of a specific environment within a facility and of the testing process as a whole. Electrical measurements are addressed in other standards, such as Guide F980. Additional information on conducting irradiations can be found in Practices E798 and F1190. This practice also may be of use to test sponsors (organizations that establish test specifications or otherwise have a vested interest in the performance of electronics in neutron environments).1.3 Methods for the evaluation and control of undesired contributions to damage are discussed in this practice. References to relevant ASTM standards and technical reports are provided. Processes and methods used to arrive at the appropriate test environments and specification levels for electronics systems are beyond the scope of this practice; however, the process for determining the 1-MeV equivalent displacement specifications from operational environment neutron spectra should employ the methods and parameters described herein. Some important considerations and recommendations are addressed in Appendix X1 (Nonmandatory information).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The neutron test spectrum must be known in order to use a measured device response to predict the device performance in an operational environment (Practice E1854). Typically, neutron spectra are determined using a set of sensors with response functions sensitive over the neutron energy region to which the device under test (DUT) responds (Guide E721). For silicon bipolar devices exposed in reactor neutron spectra, this effective energy range is between 0.01 and 10 MeV. A typical set of activation reactions that lack fission reactions from nuclides such as  235U,  237Np, or  239Pu, will have very poor sensitivity to the spectrum between 0.01 and 2 MeV. For a pool-type reactor spectrum, 70 % of the DUT electronic damage response may lie in this range making its determination of critical importance.5.2 When dosimeters with a significant response in the 0.01 to 2 MeV energy region, such as fission foils, are unavailable, silicon transistors can provide a dosimeter with the needed response to define the spectrum in this critical energy range. When fission foils are part of the sensor set, the silicon sensor provides confirmation of the spectral shape in this energy region.5.3 Silicon bipolar transistors, such as type 2N2222A, are inexpensive, smaller than fission foils contained in a boron ball, and sensitive to a part of the neutron spectrum important to the damage of modern silicon electronics. They also can be used directly in arrays to spatially map 1-MeV(Si) equivalent displacement damage fluence. The proper set of steps to take in reading the transistor-gain degradation is described in this test method.5.4 The energy-dependence of the displacement damage function for silicon is found in Practice E722. The major portion of the response for the silicon transistors will generally be above 100 keV.1.1 This test method covers the use of 2N2222A silicon bipolar transistors as dosimetry sensors in the determination of neutron energy spectra and as 1-MeV(Si) equivalent displacement damage fluence monitors.1.2 The neutron displacement in silicon can serve as a neutron spectrum sensor in the range 0.1 to 2.0 MeV and can serve as a substitute when fission foils are not available. It has been applied in the fluence range between 2 × 1012 n/cm 2 to 1 × 1014 n/cm2 and should be useful up to 1 × 1015 n/cm2. This test method details the acquisition and use of 1-MeV(Si) equivalent fluence information for the partial determination of the neutron spectra by using 2N2222A transistors.1.3 This sensor yields a direct measurement of the silicon 1-MeV equivalent fluence by the transfer technique.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
35 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页