
【国外标准】 Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Sulfate reducing archaea and bacteria are known to contribute to microbiologically influenced corrosion.5.2 Sulfate-reducing bacteria are widely distributed in marine and fresh water muds which, in consequence, frequently are laden with the hydrogen sulfide produced by these organisms during dissimilatory sulfate reduction.5.3 Traditional, culture-dependent methods such as those described in Test Methods D4412, prescribe incubation periods of as long as 21 days before assigning a below detection limit (BDL) score to a specimen. Moreover, it is well known that not all SRP will proliferate in the nutrient media specified in Test Methods D4412.5.4 This test method uses ELISA technology to provide semi-quantitative, culture-independent, SRP bioburden test results in less than 30 min.5.4.1 Because all the reagents and supplies used are non-hazardous and prepackaged for single test use, this test method does not require any apparatus other than a laboratory timer. Consequently, it can be performed at or near the point of sample collection.5.4.2 The opportunity to minimize the delay between sample collection, testing, and results availability translates into timely use of the data to drive preventive and corrective SRB control measures.1.1 This test method provides a protocol for using enzyme-linked immunosorbent assay (ELISA) technology to test water samples for the enzyme adenosine 5’-phosphosulfate reductase (APSr) concentration.1.1.1 APSr is present in all known sulfate reducing protists (SRP – sulfate reducing bacteria – SRB – and sulfate reducing archaea – SRA).1.1.2 As reported in U.S. Patent 4,999,286, APS reductase concentration can be used as a surrogate parameter for estimating SRA bioburdens (Appendix X1 compares results from Test Methods D8243, D4412, and quantitative polymerase chain reaction – qPCR – testing).1.2 This test method has been validated in tap water, oilfield produced water (salinities ranging from 100 g L-1 to 600 g L-1), and fuel-associated water (commonly referred to as bottoms-water).1.3 This test method detects APS reductase semi-quantitatively in the range of 0.001M to 0.1M – correlating to 102 SRP/mL to 106 SRP/mL.1.3.1 As described in Appendix X2 test method sensitivity can be increased 10-fold to 100-fold. However, the precision statistics provided in X apply only to 10-mL specimens.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Section 9 on Hazards.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8243-19
标准名称:
Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method
英文名称:
Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D8223-19 Standard Practice for Evaluation of Fire-Retardant Treated Laminated Veneer Lumber
- ASTM D8225-19 Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature
- ASTM D8226-21ae1 Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition Engine
- ASTM D8227-20 Standard Test Method for Determining the Coefficient of Friction of Synchronizer Lubricated by Mechanical Transmission Fluids (MTF) Using a High-Frequency, Linear-Oscillation (SRV) Test Machine
- ASTM D823-18(2022) Standard Practices for Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels
- ASTM D8232-18 Standard Test Procedures for Measuring the Inclination of Deep Foundations
- ASTM D8236-18 Standard Practice for Preparing an Equilibrium Liquid/Vapor Sample of Live Crude Oil, Condensates, or Liquid Petroleum Products Using a Manual Piston Cylinder for Subsequent Liquid Analysis or Gas Analysis
- ASTM D8239-23 Standard Specification for Performance-Graded Asphalt Binder Using the Multiple Stress Creep and Recovery (MSCR) Test
- ASTM D8240-22e1 Standard Specification for Less-Flammable Synthetic Ester Liquids Used in Electrical Apparatus
- ASTM D8241/D8241M-19 Standard Tables of Body Measurements for Young Men Type, Size Range 32 – 48
- ASTM D8243-19 Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method
- ASTM D8247-19 Standard Test Method for Determination of Total Fluorine and Total Chlorine in Coal by Oxidative Pyrohydrolytic Combustion Followed by Ion Chromatography Detection
- ASTM D8252-23 Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry
- ASTM D8253-21 Standard Test Method for Determination of the Asphaltene Solvency Properties of Bitumen, Crude Oil, Condensate and/or Related Products for the Purpose of Calculating Stability, Compatibility for Blending, Fouling, and Processibility (Manual Microscopy
- ASTM D8254-19 Standard Test Method for Flash and Fire Points of Asphalt by Cleveland Open Cup Tester