微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 These tests are useful in sampling and testing solvent bearing bituminous compounds to establish uniformity of shipments.1.1 These test methods cover procedures for sampling and testing solvent bearing bituminous compounds for use in roofing and waterproofing.1.2 The test methods appear in the following order:  SectionSampling 4Uniformity 5Weight per gallon 6Nonvolatile content 7Solubility 8Ash content 9Water content 10Consistency 11Behavior at 60°C [140°F] 12Pliability at –0°C [32°F] 13Aluminum content 14Reflectance of aluminum roof coatings 15Strength of laps of rolled roofing adhered with roof adhesive 16Adhesion to damp, wet, or underwater surfaces 17Mineral stabilizers and bitumen 18Mineral matter 19Volatile organic content 201.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Emissions of VOCs are typically controlled by internal mass-transfer limitations (for example, diffusion through the material), while emissions of SVOCs are typically controlled by external mass-transfer limitations (migration through the air immediately above the material). The emission of some chemicals may be controlled by both internal and external mass-transfer limitations. In addition, due to their lower vapor pressure, SVOCs generally adsorb to different media (chamber walls, building materials, particles, and other surfaces) at greater rates than VOCs. This sorption can increase the amount of time required to reach steady-state SVOC concentrations using conventional VOC emission test methods to months for a single test (2).4.2 Thus, existing methods for characterizing emissions of VOCs may not be appropriate or practical to properly characterize emission rates of SVOCs for use in modeling SVOC concentrations in indoor environments. A mass-transfer framework is needed to accurately assess emission rates of SVOCs when predicting the SVOC indoor air concentrations in indoor environments. The SVOC mass-transfer framework includes SVOC emission characteristics and its partition to multimedia including sorption to indoor surfaces, airborne particles, and settled dust. Once the SVOC emission parameters and partitioning coefficients have been determined, these values can be used to modeling SVOC indoor concentrations.1.1 This guide is intended to serve as a foundation for understanding when to use emission testing methods designed for volatile organic compounds (VOCs) to determine area-specific emission rates that are typically used in modeling indoor air VOC concentrations and when to use emission testing methods designed for semi-volatile organic compounds (SVOCs) to determine mass transfer emission parameters that are typically used to model indoor air, dust, and surface SVOC concentrations.1.2 This guide discusses how organic chemicals are conventionally categorized with respect to volatility.1.3 This guide presents a simplified mass-transfer model describing organic chemical emissions from a material to bulk air. The values of the model parameters are shown to be specific to material/chemical/chamber combinations.1.4 This guide shows how to use a mass-transfer model to estimate whether diffusion of the chemical within the material or convective mass transfer of the chemical from the surface of the material to the overlying air limits chemical emissions from the material surface.1.5 This guide describes the range of different chambers that are available for emission testing. The chambers are classified as either dynamic or static and either conventional or sandwich. The chambers are categorized as being optimal to determine either the area-specific emission rate or mass-transfer emission parameters.1.6 This guide discusses the roles sorption and convective mass-transfer coefficients play in selecting the appropriate emission chamber and analysis method to accurately and efficiently characterize emissions from indoor materials for use in modeling indoor chemical concentrations.1.7 This guide recommends when to choose an emission test method that is optimized to determine either the area-specific emission rate or mass-transfer emission parameters. For chemicals where the controlling mass-transfer process is unknown, the guide outlines a procedure to determine if the chemical emission is controlled by convective mass transfer of the chemical from the material.1.8 This guide does not provide specific guidance for measuring emission parameters or conducting indoor exposure modeling.1.9 Mechanisms controlling emissions from wet and dry materials and products are different. This guide considers the emission of chemicals from dry materials and products. Examples of functional uses of VOCs and SVOCs that this guide applies to include blowing agents, flame retardants, adhesives, plasticizers, solvents, antioxidants, preservatives, and coalescing agents (1).2 Emission estimations for other VOC and SVOC classes including those generated by incomplete combustion, spray application, or application as a powder (pesticides, termiticides, herbicides, stain repellents, sealants, water repellants) (1) may require different approaches than outlined in this guide because these processes can increase short-term concentrations of chemicals in the air independent of the volatility of the chemical and its categorization as a VVOC (very volatile organic compounds), VOC, SVOC, or NVOC (non-volatile organic compounds).1.10 The effects of the emissions (for example, exposure, and health effects on occupants) are not addressed and are beyond the scope of this guide.1.11 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.13 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 VOCs are emitted into ambient, indoor, and workplace air from many different sources. These VOCs are of interest for a variety of reasons including participation in atmospheric chemistry and contributing to air toxics with their associated acute or chronic health impacts.5.2 Canisters are particularly well suited for the collection and analysis of very volatile and volatile organic compounds because they collect whole gas samples.5.3 Chemically stable selected VOCs have been successfully collected in passivated stainless steel canisters. Collection of atmospheric samples in canisters provides for: (1) convenient integration of air samples over a specific time period (for example, 8 to 24 h), (2) remote sampling and central laboratory analysis, (3) ease of storing and shipping samples, (4) unattended sample collection, (5) analysis of samples from multiple sites with one analytical system, (6) dilution or additional sample concentration to keep the sample size introduced into the analytical instrument within the calibration range, (7) collection of sufficient sample volume to allow assessment of measurement precision through replicate analyses of the same sample by one or several analytical systems, (8) sample collection using a vacuum regulator flow controller if electricity is not available, and (9) grab sample collection for survey or screening purposes.5.4 Interior surfaces of the canisters may be treated by any of several proprietary passivation processes including an electropolishing process to remove or cover reactive metal sites on the interior surface of the vessel and a fused silica coating process.5.5 For this test method, VOCs are defined as organic compounds that can be quantitatively recovered from the canisters having a vapor pressure greater than 10-2 kPa at 25ºC (see Table 1 for examples).5.6 Target compound polarity is also a factor in compound recovery. Aliphatic and aromatic hydrocarbons from C1 to C13 have been successfully measured with this test method but are not listed in Table 1 (21). Higher polarity target compounds may interact with the canister surface or humidity on the canister surface causing their apparent vapor pressure to decrease. Polar VOCs such as ethers and esters have been successfully measured by this test method and are listed in Table 1.5.7 Recovery studies shall be conducted on VOCs not listed in Table 1 before expanding the use of this test method to include these additional compounds. Recovery from humidified spiked canisters shall agree with the spiked amount by ±30 %. The laboratory shall be responsible for verifying the relevant method performance characteristics for each compound added to the analyte list as agreed with their customer(s). The laboratory shall retain records of verification and make them available to customers upon request. Added VOCs (that is, those not listed in Table 1) shall be clearly identified in customer reports1.1 This test method describes a procedure for sampling and analysis of selected volatile organic compounds (VOCs) in ambient, indoor, and workplace atmospheres. The test method is based on the collection of whole air samples in stainless steel canisters with specially treated (passivated) interior surfaces.1.2 For sample analysis, a portion of the sample is subsequently removed from the canister and the collected VOCs are selectively concentrated by adsorption or condensation onto a trap, subsequently released by thermal desorption, separated by gas chromatography, and measured by a low resolution mass spectrometric detector. This test method describes procedures for sampling into canisters to final pressures both above and below atmospheric pressure (respectively referred to as pressurized and subatmospheric pressure sampling).21.3 This test method is applicable to specific VOCs that have been determined to be stable when stored in canisters (see Table 1). Numerous compounds, many of which are chlorinated VOCs, have been successfully tested for storage stability in pressurized canisters (1-4).3 Information on storage stability is also available for polar compounds (5-7). This test method has been documented for the compounds listed in Table 1 and performance results apply only to those compounds. A laboratory may determine other VOCs by this test method after completion of verification studies that include measurement of recovery as specified in 5.7 and that are as extensive as required to meet the performance needs of the customer and the given application.1.4 The procedure for collecting the sample involves the use of inlet lines, air filters, flow rate regulators for obtaining time-integrated samples, and in the case of pressurized samples, an air pump. Typical long-term fixed location canister samplers have been designed to automatically start and stop the sample collection process using electronically actuated valves and timers (8-10). Temporary or short-term canister samplers may require the user to manually start and stop sample collection. A weatherproof shelter may be required if the sampler is used outdoors. For the purposes of this test method, refer to Practice D1357 for practices and planning ambient sampling events.1.5 The organic compounds that have been successfully measured single-digit micrograms per cubic metre (µg/m3 (or single digit parts-per-billion by volume (ppbv)) concentration with this test method are listed in order of approximate retention time in Table 1. The test method is applicable to VOC concentrations ranging from the detection limit to approximately 1000 µg/m3 (300 ppbv). Above this concentration, smaller sample aliquots of sample gas may be analyzed or samples can be diluted with dry ultra-high-purity nitrogen or air or equivalent.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Safety practices should be part of the user’s SOP manual.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test procedure is used to determine the individual concentrations of the PAH compounds in the EU-8 list extracted from carbon black by the means of a Soxhlet extraction apparatus with toluene.1.1 This test method covers the qualitative and quantitative determination of the EU-8 list of polycyclic aromatic hydrocarbons (PAH) on carbon black. The EU-8 list of PAH compounds is given in Table 1. The procedure involves Soxhlet extraction with toluene followed by extract analysis using gas chromatography with mass spectrometry (GC/MS). This method is not intended to test for U.S. Food and Drug Administration (FDA 21 CFR 178.3297) compliance of carbon blacks used for indirect food contact applications.1.2 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Extraction of organic pollutants from wastes can provide information on the susceptibility of compounds to leeching, water quality changes, or other site conditions.5.2 Rapid heating, in combination with temperatures in excess of the atmospheric boiling point of organic solvents, reduces sample extraction times.5.3 Small amounts of solvents (30 mL) are used resulting in reduced sample preparation cost and time.1.1 This practice describes the closed vessel microwave extraction of soils, sediments, sludges, and wastes for subsequent determination of solvent extractable semivolatile and nonvolatile organic compounds by such techniques as gas chromatography and gas chromatography-mass spectrometry.1.1.1 Compounds listed in Tables 1–5 can be extracted from the preceding materials.1.2 This test method is applicable to samples that will pass through a 10-mesh (approximately 2-mm opening) screen.1.3 The detection limit and linear concentration range for each compound is dependent on the gas chromatograph or gas chromatograph-mass spectrometer technique employed and may be found in the manual accompanying the instrument used.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers the standard requirements for plasticized ethyl cellulose thermoplastic compounds suitable for injection molding and extrusion. It does not however include special materials compounded for special applications. Materials shall be ethyl cellulose plastics in the form of pellets with uniform size and composition and may contain colorants in nominal amounts. Test specimens shall conform to the following physical property requirements: unpigmented specific gravity; Rockwell hardness; tensile strength; impact strength; deflection temperature; water absorption; and weight loss on heating.1.1 This specification covers requirements for plasticized ethyl cellulose thermoplastic compounds suitable for injection molding and extrusion. It does not include special materials compounded for special applications.1.2 The values stated in SI units are to be regarded as standard. The English values given are for information only.1.3 The following precautionary statement pertains only to the Test Methods portion, Section 9 of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this specification.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers compression molding, thermosetting, melamine-formaldehyde molding compounds, resin binder, with or without other resins, intimately combined with fillers, pigments, and any chemical agents needed. The molding compounds shall conform to the requirements specified. Tests shall be performed to determine the properties of the material in accordance with the following test methods: bulk factor; specific gravity; water absorption; impact resistance; flexural strength; deflection temperature; dielectric strength; permittivity and dissipation factor; arc resistance; shrinkage; and comparative tracking index.1.1 This specification covers compression molding, thermosetting, melamine-formaldehyde molding compounds as further defined in 4.1, resin binder, with or without other resins, intimately combined with fillers, pigments, and any chemical agents needed.1.2 The values stated in SI units are to be regarded as the standard.NOTE 1: The properties included in this specification are those required to identify the types of molding compounds covered. There may be other requirements necessary to identify particular characteristics. These will be added to the specification as their inclusion becomes generally desirable and the necessary test data and methods become available. Transfer or injection molding will usually result in different physical and electrical characteristics than compression molding.NOTE 2: ISO 2122-1977(E) is similar but not equivalent to this specification. Product classification and characterization are not equivalent.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 With the common occurrence in water of organic compounds, some of which are toxic, it is often necessary to identify the specific compounds present and to determine the concentration.1.1 This guide covers the identification and quantitation of organic compounds by gas chromatography/mass spectrometry (GC-MS) (electron impact) that are present or extracted from water and are capable of passing through a gas chromatograph without alteration. This guide can be used to provide tentative identifications of volatile and semi-volatile organics, but is restricted to (a) compounds for which reference spectra can be obtained and (b) compounds that can be separated by gas chromatography (GC). These restrictions are imposed on the guide, but are not a limitation of the technique. The guide is written for analysis using automated data acquisition and handling.1.2 Guidelines have been included for quantitation using ASTM Test Methods D3871, D3973, and other GC-MS volatile/semivolatile procedures used for environmental analysis2. The actual detection limits for each component must be determined in each laboratory. Actual detection amounts will vary with the complexity of the matrix, the kind and condition of the GC-MS system, the sample preparation technique chosen, and the application of cleanup techniques to the sample extract, if any. Lower levels of detection can be achieved using modern sensitive instruments or with selected ion monitoring (SIM). To determine the interlaboratory detection estimate (IDE) and the interlaboratory quantitation estimate (IQE), follow Practices D6091 and D6512.1.3 The guide is applicable to the identification of many organic constituents of natural and treated waters. It includes all modes of sample introduction, including injection of organic extracts, direct aqueous injection, and purge and trap techniques.1.4 The guide is applicable to capillary column gas chromatography.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method is applicable to the determination of trace amounts of aldehydes and ketones in aqueous solutions and a wide variety of organic solvents.1.1 This test method covers the determination of total carbonyl in the range from 0.5 μg to 50 μg calculated as CO.1.2 This test method is intended to be general and does not include steps for sample preparation.1.3 Acetals that hydrolyze under the conditions of the test are also determined.1.4 Carbonyl derivatives such as acetals and imines that are easily hydrolyzed may be determined by an alternative procedure.1.5 The developed color is not stable and must be measured within a specified period.NOTE 1: Other test methods for the determination of traces of carbonyl compounds are given in Test Methods D1089, D1612, D2119, and D2191.1.6 Review the current appropriate Safety Data Sheets (SDS) for detailed information concerning toxicity, first aid procedures, and safety precautions.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 7 and Section 8.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Shrinkage is a measure of the nonvolatile solids of an oil- or resin-base compound. A compound that exhibits excessive shrinkage may have a tendency to crack or shrink from the sides of a joint when in service.5.2 Tenacity is the measure of the flexibility of an oil- or resin-base caulking compound. Oil- or resin-base caulking compounds that cure excessively hard and do not remain flexible may fail prematurely because of the inability to absorb movement.1.1 This test method describes a laboratory procedure for determining the shrinkage of oil- and resin-base (Note) caulking compounds, as well as the evaluation of the tenacity property of such compounds. This test method is applicable to both gun (Type I) and knife (Type II) grades.NOTE 1: This is not a suitable test method for water-base products.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 The subcommittee with jurisdiction is not aware of any similar ISO standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D729-95 Standard Specification for Vinylidene Chloride Molding Compounds (Withdrawn 2000) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 This specification covers thermoplastic molding compounds composed of a copolymer of vinyl chloride and vinylidene chloride in the approximate ratio of 10 to 90, with suitable plasticizers, stabilizers, dyes, and pigments. The molding compounds are suitable for compression, injection, or extrusion molding. 1.2 The values stated in SI units are to be regarded as the standard. Note 1-The properties included in this specification are those required to identify the types of molding materials covered. There may be other requirements necessary to identify particular characteristics. These will be added to the specification as their inclusion becomes generally desirable and the necessary test data and methods become available. Note 2-There is no similar or equivalent ISO standard. 1.3 The following precautionary caveat pertains only to the test method portion, Section 8, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Refractory metal powders, such as tungsten and molybdenum, are usually produced by hydrogen reduction at high temperatures. Thus, they usually contain numerous large, strongly-sintered agglomerates. Many of the manufacturing processes using these powders involve a milling step or some similar treatment or depend on the individual particulate size, not on the agglomerate size.3 Thus, a knowledge of the individual particulate size distribution, not the agglomerate size distribution, is usually desired from a particle size analysis of these powders. This practice provides a procedure for breaking down agglomerates into their constituent particles (de-agglomeration), without excessive fracture of the individual particles. The procedure is often referred to as laboratory milling or rod milling.4.2 The laboratory milling conditions specified in this guide have been in use since 1965, initially as part of a particle size analysis test method. This guide was first published as a separate, stand-alone standard in 1995 because of its applicability in preparing powder samples for analysis by other methods as well (for example, Test Methods B761 and B822). Information on the development and establishment of the milling conditions here specified can be found in the footnoted reference.44.3 The milling procedure described in this practice does not necessarily break down only agglomerates without fracturing individual particles; some particle fracture may occur in certain powders. However, use of this practice does provide consistent particle size analysis results that have been found to relate well to powder behavior in numerous manufacturing processes.4.4 This practice shall be used for the de-agglomeration of the refractory metal powders and compounds listed in 1.2, when an evaluation of the individual particulate size distribution is required from the subsequent particle size analysis. It shall not be used when the agglomerate (as-is or as-supplied) size distribution is desired.4.5 This practice may be used in preparing samples for Test Methods B330, B761, B822, and other particle size analysis methods, prior to the dispersion procedure of Guide B821, if used.1.1 This practice covers the de-agglomeration of refractory metal powders and their compounds in preparation for particle size analysis.1.2 Experience has shown that this practice is satisfactory for the de-agglomeration of elemental tungsten, molybdenum, rhenium, and tantalum metal powders, and tungsten carbide. Other metal powders (for example, elemental metals, carbides, and nitrides) may be prepared for particle size analysis using this practice with caution as to effectiveness until actual satisfactory experience is developed.1.3 Units—With the exception of the values for mass, for which the use of the gram (g) unit is the long-standing industry practice, the values stated in SI units are to be regarded as standard. No other units of measure are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Note 2.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Vapor intrusion testing has been performed traditionally using multiple canister samples or thermal desorption tube samples. These discontinuous measurements have been shown to be snapshots and provide averages of exposure. In many cases a higher temporal resolution is desirable to identify peaks of emissions due to specific occupancy or environmental changes. For these cases, a continuous real-time monitoring solution is desirable. These continuous monitoring setups can be either short-term or be part of a long-term monitoring plan as described in ASTM guide “Standard Guide for the development of LongTerm Monitoring Plans for Vapor Mitigation Systems” (E2600).5.2 The PTR-MS provides real-time measurement of multiple VOCs at ultra-trace levels, that is, in the µL/L (ppm) to less than pL/L (ppt) range. Its strengths lie with the ability to measure VOCs in real-time and continuously (that is, ~1 Hz or faster, using time-of-flight analyzers), and with limited sample pre-treatment, compared to a gas chromatograph (GC) system, which is commonly the method of choice to measure VOCs using a variety of detectors. In case of PTR-MS with quadrupole analyzers, the terms would be nearreal-time and semi-continuous. The high temporal resolution of the PTR-MS measurement in the range of second(s) is often desired when studying the atmospheric chemistry or source emissions that result in unpredictable, sudden, and short-term fluctuations. For a detailed description on the design and theory and practical aspects of operation for the different types of PTR-MS, please refer to Yuan et al. (2017)(1).5.3 For ambient air measurements, such as vapor intrusion (VI) related emission testing, the PTR-MS can be used in three different modes of operation: (1) in scanning mode to identify sources and VI entry points within buildings; (2) in variation identification mode, as a continuous monitoring instrument with seconds to minutes of temporal resolution covering a large number of VOCs; (3) in source tracking mode, as a scanner of indoor and outdoor sources and as a rapid tracking device for external emissions; this requires the instrument to be mounted on a moveable platform, such as on an (autonomous) vehicle or trolley. The same operation can be used to identify various other constituents in air, depending on the application—be it fugitive emissions from toxic materials or illicit materials, or metabolic reactions to infections expressed in different breath emissions.5.4 Spatial and temporal variability are two common challenges with ambient air measurements and source assessments. Within a given building, the sources for vapors can be few or many and are generally irregularly spaced; they may be obscured from view by floor coverings, furniture or walls, which in itself can be a large source of VOC. The current methods of choice require the use of time-discreet monitoring or time-averaged monitoring of a specific sampling spot. Real-time monitoring provides a method to assess the spatial distribution of vapor concentrations, which may help to rapidly and efficiently identify the location of vapor entry points.5.5 Real time assessment is valuable as a component of a program of assessment with two or more supporting lines of evidence and can be used to:5.5.1 Provide support for real-time decisions such as where and when to collect long-term samples for fixed laboratory analysis using canisters or sorbent tubes;5.5.2 Verify data quality (for example, monitoring the efficacy of soil gas probe purging prior to sampling, providing leak checks; and5.5.3 Measure changes in VOC vapor concentrations in response to changes in building pressure, temperature, solar irradiation, or other weather conditions and factors affecting vapor fate and transport, including secondary chemistry occurring within the building.5.5.4 Identify alternative pathways based on prior identified intrusion compounds or based on emissions within such pathways, such as stormwater drains.5.6 Screening of a property prior to a real estate transaction based on site specific potential sources of concern. The option for voluntary investigative assessments of potential VI in the real estate business is described in ASTM method E2600-15.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method describes a technique of quantifying the results from measuring various volatile organic compound contents using a chemical ionization mass spectrometer resulting in the production of positively charged target compound ions. Depending on the nature of production of so-called primary ions, the associated instruments having the capability to perform such analyses are either named Proton Transfer Reaction Mass Spectrometers (PTR-MS), Selected Ion Flow Tube Mass Spectrometers (SIFT-MS) or, in the most generic term, Mid-pressure chemical ionization mass spectrometers (MPCI-MS). Within this standard, the term PTR-MS is used to represent any of these instrumentations.1.2 Either of the instrument types can be used with the two main mass analyzers on the market, that is, with either quadrupole (QMS) or time-of-flight (TOFMS) mass analyzer. This method relates only to the quantification portion of the analysis. Due to large differences in user interfaces and operating procedures for the instruments of the main instrument providers, the specifics on instrument operation are not described in this method.1.3 Details on the theoretical aspects concerning ion production and chemical reactions are included in this standard as far as required to understand the quantification aspects and practical operation of the instrument in the field of vapor intrusion analyses. Specifics on the operation and/or calibration of the instrument need to be identified by using the user’s manual of the individual instrument vendor. A comprehensive discussion on the technique including individual mass-line interferences and in-depth comparison with alternate methods are given in multiple publications, such as Yuan et al. (2017) (1) and Dunne et al. (2018) (2)2.1.4 Units—Values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.5.1 The procedures used to specify how data are collected/recorded or calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering data.1.6 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method provides an analytical procedure for measuring formaldehyde and other carbonyl compounds in indoor, workplace, ambient air or for emission testing.1.1 This test method presents a procedure for the determination of formaldehyde (HCHO) and other carbonyl compounds (aldehydes and ketones) in air. Other carbonyl compounds that have been successfully quantified by this method include acetaldehyde, acetone, propanal (propionaldehyde), 2-butanone (methyl ethyl ketone), butyraldehyde, benzaldehyde, isovaleraldehyde, valeraldehyde, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, hexanal, and 2,5-dimethylbenzaldehyde.1.2 This test method involves drawing air through a cartridge containing silica gel coated with 2,4-dinitrophenylhydrazine (DNPH) reagent. Carbonyl compounds readily form stable derivatives with the acidified DNPH reagent. The DNPH derivatives are analyzed for parent aldehydes and ketones using high performance liquid chromatography (HPLC) or ultra-high performance liquid chromatography (UHPLC). UHPLC systems use higher pressures and smaller particle sizes in columns compared to HPLC systems. The sampling procedure is a modification of U.S. EPA Method TO-11A (see 2.2).1.3 This test method is based on the reaction of carbonyl compounds with DNPH in the presence of an acid to form stable derivatives according to the reaction shown in Fig. 1, (where: both R and R1 are alkyl or aromatic groups (ketones), or either, or both R or R1 is a hydrogen atom (aldehydes)). The determination of formaldehyde and other carbonyl compounds, as DNPH derivatives, is similar to that of U.S. EPA Method TO-11A in that it uses HPLC or UHPLC for separation of carbonyl compounds followed by UV adsorption or photodiode array detection. This test method exceeds the stated applicability of TO-11A to include other carbonyl compounds that can be determined as stated in 10.2.4. This test method is suitable for determination of formaldehyde and other carbonyl compounds in the airborne concentration range from approximately 10 ppbv/v (12 μg/m3), requires sampling for 1 h at 1 L/min) to 1 ppmv/v (1.2 mg/m3). Lower concentrations in air may be determined using higher sampling volume and with control of contamination, appropriate selection of flow rate and sampling duration.FIG. 1 Reaction of Carbonyl Compounds1.4 The sampling method gives a time-weighted average (TWA) sample. It can be used for long-term (1 to 24 h) or short-term (5 to 60 min) sampling of air for formaldehyde. Shorter sampling times or low flow rates will result in higher detection limits and may result in greater variation in co-located sampler results. Tests should be performed over a duration and a flow rate that allows the data quality objective of the project to be achieved. Sample times for other carbonyls, such as acetaldehyde, may be limited to short term (1).2 The data provides total concentrations of carbonyl compounds from which time weighted average concentrations can be calculated.1.5 This test method instructs the user on how to prepare sampling cartridges from commercially available chromatographic grade silica gel cartridges3 by the application of acidified DNPH to each cartridge.1.6 The sampling flow rate, as described in this test method, has been validated for sampling rates up to 1.5 L/min for formaldehyde. This flow rate limitation is principally due to the high pressure drop (>8 kPa at 1.0 L/min) across user prepared silica gel cartridges which have a particle size of 55 to 105 µm. These cartridges are not generally compatible with battery-powered pumps used in personal sampling equipment (for example, those used by industrial hygienists).1.7 Alternatively, pre-coated DNPH silica gel cartridges are commercially available and may be substituted provided they can be demonstrated to meet blank and analyte trapping acceptance criteria (2). Some of these use silica gel of a larger particle size that results in a lower pressure drop across the cartridge. These low pressure drop cartridges may be more suitable for sampling air using battery-powered personal sampling pumps.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method is useful in characterizing certain petroleum products by the determination of their loss of mass upon heating under standardized conditions.1.1 This test method covers the determination of the loss in mass (exclusive of water) of oil and asphaltic compounds when heated as hereinafter prescribed.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability and regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
136 条记录,每页 15 条,当前第 2 / 10 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页