微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The test method is designed to show whether or not a material meets the specifications as given in Specifications C753 or C776.5.2 The powder’s stoichiometry is useful for predicting the oxide's sintering behavior in the pellet production process.1.1 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear grade uranium dioxide powder and pellets.1.2 This test method does not include provisions for preventing criticality accidents or requirements for health and safety. Observance of this test method does not relieve the user of the obligation to be aware of and conform to all international, national, or federal, state and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material.1.3 This test method also is applicable to UO3 and U3O8 powder.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Test Method—The data obtained from the use of this test method provide a comparative index of the fuel-saving capabilities of automotive engine oils under repeatable laboratory conditions. A baseline calibration oil (hereafter referred to as BC oil) has been established for this test to provide a standard against which all other oils can be compared. The BC oil is an SAE 5W-30 grade fully formulated lubricant. There is a direct correlation of Test Method D6837 (Sequence VIB) Fuel Economy Improvement (FEI) by percent with the fuel economy results obtained from vehicles representative of current production running under the current EPA testing cycles. The test procedure was not designed to give a precise estimate of the difference between two test oils without adequate replication. Rather, it was developed to compare a test oil to BC oil. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.5.2 Use—The Sequence VIB test method is useful for engine oil fuel economy specification acceptance. It is used in specifications and classifications of engine lubricating oils, such as the following:5.2.1 Specification D4485.5.2.2 API Publication 1509.5.2.3 SAE Classification J304.5.2.4 SAE Classification J1423.1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty trucks with gross vehicle weight of 3856 kg or less. The tests are conducted on a dynamometer test stand using a specified spark-ignition engine with a displacement of 4.6-L. It applies to multiviscosity grade oils used in these applications.1.2 This test method also provides for the running of an abbreviated length test that is referred to as the VIBSJ. The procedure for VIBSJ is identical to the Sequence VIB with the exception of the items specifically listed in Annex A13. The procedure modifications listed in Annex A13 refer to the corresponding section of the Sequence VIB test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exceptions—Where there is no direct SI equivalent such as screw threads, National Pipe Threads/diameters, tubing size, or single source supply equipment specifications. Brake Specific Fuel Consumption is measured in kilograms per kilowatthour. In Figs. A2.4, A2.5, and A2.8, inch-pound units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This test method is arranged as follows:Subject SectionIntroduction   1Referenced Documents 2Terminology 3Summary of Test Method 4 5Apparatus 6 General 6.1 Test Engine Configuration 6.2 Laboratory Ambient Conditions 6.3 Engine Speed and Torque Control 6.4  Dynamometer 6.4.1  Dynamometer Torque 6.4.2 Engine Cooling System 6.5 External Oil System 6.6 Fuel System 6.7  Fuel Flow Measurement 6.7.2  Fuel Temperature and Pressure Control to   the Fuel Flowmeter 6.7.3  Fuel Temperature and Pressure Control to   Engine Fuel Rail 6.7.4 Fuel Supply Pumps 6.7.5  Fuel Filtering 6.7.6 Engine Intake Air Supply 6.8  Intake Air Humidity 6.8.1  Intake Air Filtration 6.8.2  Intake Air Pressure Relief 6.8.3 Temperature Measurement 6.9  Thermocouple Location 6.9.5 AFR Determination 6.10 Exhaust and Exhaust Back Pressure Systems 6.11  Exhaust Manifolds 6.11.1  Laboratory Exhaust System 6.11.2  Exhaust Back Pressure 6.11.3 Pressure Measurement and Pressure Sensor  Locations 6.12  Engine Oil 6.12.2  Fuel to Fuel Flowmeter 6.12.3  Fuel to Engine Fuel Rail 6.12.4  Exhaust Back Pressure 6.12.5  Intake Air 6.12.6  Intake Manifold Vacuum/Absolute Pressure 6.12.7  Coolant Flow Differential Pressure 6.12.8  Crankcase Pressure 6.12.9 Engine Hardware and Related Apparatus 6.13  Test Engine Configuration 6.13.1  ECM/EEC (Engine Control) Module 6.13.2  Thermostat/Orifice Plate 6.13.3  Intake Manifold 6.13.4  Flywheel 6.13.5  Wiring Harnesses 6.13.6  EGR Block-Off Plate 6.13.7  Oil Pan 6.13.8  Oil Pump Screen and Pickup Tube 6.13.9  Idle Speed Control Solenoid (ISC) Block-Off   Plate 6.13.10  Engine Water Pump 6.13.11  Thermostat Housing 6.13.12  Oil Filter Adapter 6.13.13  Fuel Rail 6.13.14 Miscellaneous Apparatus Related to Engine  Operation 6.14  Timing Light 6.14.1Reagents and Materials 7 Engine Oil 7.1 Test Fuel 7.2 Engine Coolant 7.3 Cleaning Materials 7.4Preparation of Apparatus 8 Test Stand Preparation 8.2Engine Preparation 9 Cleaning of Engine Parts 9.2 Engine Assembly Procedure 9.3  General Assembly Instructions 9.3.1  Bolt Torque Specifications 9.3.2  Sealing Compounds 9.3.3  Harmonic Balancer 9.3.5  Oil Pan 9.3.6  Intake Manifold 9.3.7  Camshaft Covers 9.3.8  Thermostat 9.3.9  Thermostat Housing 9.3.10  Coolant Inlet 9.3.11  Oil Filter Adapter 9.3.12  Dipstick Tube 9.3.13  Water Pump 9.3.14  Sensors, Switches, Valves, and Positioners 9.3.15  Ignition System 9.3.16  Fuel Injection System 9.3.17  Intake Air System 9.3.18  Engine Management System (Spark and Fuel   Control) 9.3.19  Accessory Drive Units 9.3.20  Exhaust Manifolds 9.3.21  Engine Flywheel and Guards 9.3.22  Lifting of Assembled Engines 9.3.23  Engine Mounts 9.3.24Calibration 10 Stand/Engine Calibration 10.1  Procedure 10.1.1  Reporting of Reference Results 10.1.2  Analysis of Reference/Calibration Oils 10.1.3  Instrument Calibration 10.2  Engine Torque Measurement System 10.2.1  Fuel Flow Measurement System 10.2.2  Coolant Flow Measurement System 10.2.3  Thermocouple and Temperature Measurement   System 10.2.4  Humidity Measurement System 10.2.5  Other Instrumentation 10.2.6Test Procedure 11 Preparation for Initial Start-up of New Engine 11.1  External Oil System 11.1.1  Flush Effectiveness Demonstration 11.1.2  Preparation for Oil Charge 11.1.3  Oil Charge for Coolant Flush 11.1.4  Engine Coolant Charge for Coolant Flush 11.1.5 Initial Engine Start-up 11.2 Coolant Flush 11.3 New Engine Break-In 11.4  Oil Charge for Break-In 11.4.2  Break-In Operating Conditions 11.4.3 Routine Test Operation 11.5  Start-Up and Shutdown Procedures 11.5.8  Flying Flush Oil Exchange Procedures 11.5.9  Test Operating Stages 11.5.10  Stabilization to Stage Conditions 11.5.11  Stabilized BSFC Measurement Cycle 11.5.12  Data Logging 11.5.13  BC Oil Flush Procedure for BC Oil Before Test   Oil 11.5.14 BSFC Measurement of BC Oil Before Test Oil 11.5.15  Test Oil Flush Procedure 11.5.16  Test Oil Aging 11.5.17  BSFC Measurement of Aged (Phase I) Test Oil 11.5.18  Aging Phase II 11.5.19  BSFC Measurement of Aged (Phase II) Test Oil 11.5.21  BC Oil Flush Procedure for BC Oil After Test Oil 11.5.22  BSFC Measurement for BC Oil After Test Oil 11.5.23  General Test Data Logging Forms 11.5.24  Diagnostic Review Procedures 11.5.25 Determination of Test Results 12  FEI1 and FEI2 Calculations 12.1 Final Test Report 13  Validity Statement 13.1  Report Format 13.2Precision and Bias 14 Precision 14.1 Validity 14.2  Test Stand Calibration Status 14.2.1  Validity Interpretation of Deviant Operational   Conditions 14.2.2 Bias 14.3Keywords 15   Annexes  Role of ASTM TMC Annex A1Detailed Specifications and Drawings of Apparatus Annex A2Oil Heater Cerrobase Refill Procedure Annex A3Engine Part Number Listing Annex A4Flying Flush Checklists Annex A5Safety Precautions Annex A6Report Format Annex A7Statistical Equations for Mean and Standard Deviations Annex A8Oil Sump Full Level Determination Consumption Measurement Calibration Procedure Annex A9Fuel Injector Evaluation Annex A10Pre-test Maintenance Checklist Annex A11Blow-by Ventilation System Requirements Annex A12VIBSJ Abbreviated Length Test Requirements Annex A13   Appendix  Procurement of Test Materials Appendix X1

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The autoignition temperature (AIT) of a gas mixture is the minimum temperature at which a gas mixture spontaneously ignites without an external ignition source. AIT is typically determined at atmospheric pressure, using small test vessels open to the atmosphere where gas is quickly injected into the test vessel and heated for a pre-determined time observing ignition or non-ignition (Test Method E659). AIT is often not directly applicable to real world conditions. Therefore, there is need for a test that determines if a gas or liquefied gas ignites or does not ignite when released onto a hot surface in a more unconstrained environment.1.1 This test method covers a means for the discrimination between gases, which will ignite or not ignite when impinged on a hot surface when that surface is heated to 800 °C (1472 °F) or greater for a period of 2 min in a non-confined environment.1.2 This test method may be applied to any non-pyrophoric substance that is a gas or liquefied gas, particularly GHS category 1B gases, at ambient temperature and pressure.1.3 This test method should be used subject to the limitations that no single fire hazard property such as flash point, auto-ignition temperature (AIT), or the performance under the conditions of the present method shall be used to describe or appraise the fire hazard or fire risk of a material, product, assembly, or system under actual fire conditions. Fire hazard properties measured under controlled laboratory conditions may nevertheless be employed to describe properly the response of materials, products, assemblies, or systems under said controlled conditions. Properties measured under controlled laboratory conditions may be used as elements of hazard or risk assessment only when such assessments takes into account all of the factors that are pertinent to the evolution of the fire hazard of a given situation.1.4 This standard is used to provide a quantitative measure of a gas’s or liquefied gas’s realistic surface ignition temperature in a non-quiescent environment.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This test method covers an engine test procedure for evaluating automotive engine oils for certain high-temperature performance characteristics, including oil thickening, sludge and varnish deposition, and oil consumption, as well as engine wear. Such oils include both single viscosity grade and multiviscosity grade oils which are used in both spark-ignition, gasoline-fueled engines, as well as in diesel engines. Note 1-Companion test methods used to evaluate engine oil performance for specification requirements are discussed in SAE J304. 1.2 The values stated in either acceptable metric units or in other units shall be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system must be used independently of the other, without combining values in any way. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.4 This test method is arranged as follows: Subject Section Introduction 1 Referenced Documents 2 Terminology 3 Summary of Test Method 4 Significance and Use 5 Apparatus 6 Laboratory 6.1 Drawings 6.2 Specified Equipment 6.3 Test Engine 6.4 Engine Parts 6.4.1 Hold-Back Fixture 6.4.2 Engine Speed and Load Control 6.5 Engine Cooling System 6.6 Flushing Tank 6.7 Coolant Mixing Tank 6.8 Jacketed Rocker Cover, Intake Manifold Crossover, and Breather Tube Cooling Systems 6.9 External Oil-Cooling System 6.10 Fuel System 6.11 Carburetor Air Supply Humidity, Temperature, and Pressure 6.12 Temperature Measurement 6.13 Thermocouple Location 6.13.1 Air-to-Fuel Ratio Determination 6.14 Exhaust and Exhaust Back Pressure Systems 6.15 Blowby Flow Rate Measurement 6.16 Pressure Measurement and Pressure Sensor Location 6.17 Reagents and Materials 7. Test Fuel 7.1 Additive Concentrate for the Coolant 7.2 Coolant Preparation 7.3 Pre-Test Cleaning Materials 7.4 Post-Test Cleaning Materials 7.5 Sealing and Anti-seize Compounds 7.6 Hazards 8 Test Oil Sample Requirements 9 Preparation of Apparatus 10 Oil Heat Exchanger Cleaning 10.1 Jacketed Rocker Cover Cleaning 10.2 Breather Tube Cleaning 10.3 Cleaning of Special Stainless Steel Parts 10.4 Intake Manifold Cleaning 10.5 Precision Rocker Shaft Follower Cleaning 10.6 Cleaning of Engine Parts (other than the block and heads) 10.7 Engine Block Cleaning 10.8 Cylinder Head Cleaning 10.9 Engine Build-up Procedure 10.10 General Information 10.10.1 Special Parts 10.10.2 Hardware Information 10.10.3 Sealing Compound Applications 10.10.4 Fastener Torque Specifications and Torquing Procedures 10.10.5 Main Bearing Cap Bolts 10.10.5.1 Cylinder Head Bolts 10.10.5.2 Intake Manifold Bolts 10.10.5.3 Torques for Miscellaneous Bolts, Studs, and Nuts 10.10.5.4 Parts Replacement 10.10.6 Engine Block Preparation 10.10.7 Piston Fitting and Numbering 10.10.8 Piston Ring Fitting 10.10.9 Pre-Test Camshaft and Lifter Measurements 10.10.10 Camshaft Bearing Installation 10.10.11 Camshaft Preparation 10.10.12 Camshaft Installation 10.10.13 Installation of Camshaft Hold-Back Fixture 10.10.14 Camshaft Sprocket, Crankshaft Sprocket, and Chain 10.10.15 Camshaft Thrust Button 10.10.16 Main Bearings 10.10.17 Crankshaft 10.10.18 Main Bearing Cap Installation 10.10.19 Crankshaft End Play 10.10.20 Piston Pin Installation 10.10.21 Piston Installation 10.10.22 Harmonic Balancer 10.10.23 Connecting Rod Bearings 10.10.24 Engine Front Cover 10.10.25 Coolant Inlet Adapter 10.10.26 Timing Mark Accuracy 10.10.27 Oil Pump 10.10.28 Oil Dipstick Hole 10.10.29 Oil Pan 10.10.30 Cylinder Head Assembly 10.10.31 Adjustment of Valve Spring Loads 10.10.32 Cylinder Head Installation 10.10.33 Hydraulic Valve Lifters 10.10.34 Pushrods 10.10.35 Precision Rocker Shaft Assembly 10.10.36 Valve Train Loading 10.10.37 Intake Manifold 10.10.38 Rocker Cover Deflectors and Stanchions 10.10.39 Rocker Covers 10.10.40 Water Inlet Adapter 10.10.41 Breather Tube 10.10.42 Coolant Outlet Adapter 10.10.43 Oil Fill Adapter 10.10.44 Oil Filter Adapter 10.10.45 Oil Sample Valve 10.10.46 Ignition System 10.10.47 Carburetor 10.10.48 Accessory Drive Units 10.10.49 Exhaust Manifolds, Water-Cooled 10.10.50 Engine Flywheel 10.10.51 Pressure Checking of Engine Coolant System 10.10.52 Lifting of Assembled Engines 10.11 Mounting the Engine on the Test Stand 10.12 External Cooling System Cleaning 10.13 Engine Coolant Jacket and Intake Manifold Coolant Crossover Cleaning (Flushing) 10.14 Coolant Charging 10.15 Test Oil Charging 10.16 Engine Oil Pump Priming and Cam-and-Lifter Pre- Test Lubrication 10.17 Calibration 11 Laboratory and Engine Test Stand Calibration 11.1 Testing of Reference Oils 11.1.1 Reference Oil Test Frequency 11.1.2 Reporting of Reference Oil Test Results 11.1.3 Evaluation of Reference Oil Test Results 11.1.4 Status of Non-reference Oil Tests Relative to Reference Oil Tests 11.1.5 Status of Test Stands Used for Non-Standard Tests 11.1.6 Instrumentation Calibration 11.2 Engine Operating Procedure 12 Dipstick and Hole Plug 12.1 Oil Fill Adapter 12.2 Carburetor Air Inlet Supply Line 12.3 Engine Start-up and Shutdown Procedures 12.4 Start-up 12.4.1 Shutdown 12.4.2 Non-Scheduled Shutdowns 12.4.3 Oil Sampling 12.5 Oil Leveling 12.6 Checks for Glycol Contamination 12.7 Air-to-Fuel-Ratio Measurement and Control 12.8 Blowby Flow Rate Measurement 12.9 NOx Determinations 12.10 Data Recording 12.11 Ignition Timing Run (Ten Minutes) 12.12 Break-In (4 Hours) 12.13 Engine Oil Quality Testing (64 Hours) 12.14 Test Termination 12.15 Determination of Test Results 13 Engine Disassembly 13.2 Preparation of Parts for Rating of Sticking, Deposits, and Plugging 13.3 Rating Environment 13.4 Part Sticking 13.5 Sludge Rating 13.6 Piston Skirt Deposits Rating 13.7 Oil Ring Land Deposits Rating 13.8 Part Plugging Observations 13.9 Visual Inspection for Scuffing and Wear 13.10 Post-Test Camshaft and Lifter Wear Measurements 13.11 Connecting Rod Bearing Weight Loss 13.12 Viscosity Test 13.13 Blowby Flow Rate Measurements 13.14 Oil Consumption Computation 13.15 Photographs of Test Parts 13.16 Retention of Representative Test Parts 13.17 Severity Adjustments 13.18 Determination of Operational Validity 13.19 Report 14 Report Forms 14.1 Use of SI Units 14.2 Precision of Reported Units 14.3 Deviations from Test Operational Limits 14.4 Oil Pressure Plot 14.5 Precision and Bias 15 Keywords 16 Annexes The Role of the ASTM Test Monitoring Center (TMC) and the Calibration Program A1 Sequence IIIE Engine Test Parts A2 Sequence IIIE Test Parts and Drawings A3 Sequence IIIE Test Fuel Analysis A4 Sequence IIIE Test Control Chart Technique for Developing and Applying Severity Adjustments A5 Sequence IIIE Test Reporting A6 Sequence IIIE Test Air-to-Fuel Ratio A7 Sequence IIIE Test Blowby Flow Rate Correction Factor A8 Appendixes Sequence IIIE Test-Engine Build Measurement Worksheets X1 Sequence IIIE Test-Pre- and Post-Test Measurements X2 Sequence IIIE Test-Cam Lobe Oiling Wand X3 Sequence IIIE Test-Operational Logs, Checklists, and Worksheets X4 Sequence IIIE Test-Rating Worksheets X5

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 A knowledge of spark-ignition engine fuel composition is useful for regulatory compliance, process control, and quality assurance.5.2 The quantitative determination of olefins and other hydrocarbon types in spark-ignition engine fuels is required to comply with government regulations.5.3 This test method is not applicable to M85 fuels, which contain 85 % methanol.1.1 This test method covers the quantitative determination of saturates, olefins, aromatics, and oxygenates in spark-ignition engine fuels by multidimensional gas chromatography. Each hydrocarbon type can be reported either by carbon number (see Note 1) or as a total.NOTE 1: There can be an overlap between the C9 and C10 aromatics; however, the total is accurate. Isopropyl benzene is resolved from the C8 aromatics and is included with the other C9 aromatics.1.2 This test method is not intended to determine individual hydrocarbon components except benzene and toluene.1.3 This test method is divided into two parts, Part A and Part B.1.3.1 Part A is applicable to the concentration ranges for which precision (Table 10 and Table 11) has been obtained:Property Units Applicable rangeTotal aromatics Volume % 19.32 to 46.29Total saturates Volume % 26.85 to 79.31Total olefins Volume % 0.40 to 26.85Oxygenates Volume % 0.61 to 9.85Oxygen Content Mass % 2.01 to 12.32Benzene Volume % 0.38 to 1.98Toluene Volume % 5.85 to 31.65Methanol Volume % 1.05 to 16.96Ethanol Volume % 0.50 to 17.86MTBE Volume % 0.99 to 15.70ETBE Volume % 0.99 to 15.49TAME Volume % 0.99 to 5.92TAEE Volume % 0.98 to 15.591.3.1.1 This test method is specifically developed for the analysis of automotive motor gasoline that contains oxygenates, but it also applies to other hydrocarbon streams having similar boiling ranges, such as naphthas and reformates.1.3.2 Part B describes the procedure for the analysis of oxygenated groups (ethanol, methanol, ethers, C3 to C5 alcohols) in ethanol fuels containing an ethanol volume fraction between 50 % and 85 % (17 % to 29 % oxygen). The gasoline is diluted with an oxygenate-free component to lower the ethanol content to a value below 20 % before the analysis by GC. The diluting solvent should not be considered in the integration, this makes it possible to report the results of the undiluted sample after normalization to 100 %.1.4 Oxygenates as specified in Test Method D4815 have been verified not to interfere with hydrocarbons. Within the round robin sample set, the following oxygenates have been tested: MTBE, ethanol, ETBE, TAME, iso-propanol, isobutanol, tert-butanol and methanol. Applicability of this test method has also been verified for the determination of n-propanol, acetone, and di-isopropyl ether (DIPE). However, no precision data have been determined for these compounds.1.4.1 Other oxygenates can be determined and quantified using Test Method D4815 or D5599.1.5 The method is harmonized with ISO 22854.1.6 This test method includes a relative bias section for U.S. EPA spark-ignition engine fuel regulations for total olefins reporting based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D1319 as a possible Test Method D6839 alternative to Test Method D1319. The Practice D6708 derived correlation equation is only applicable for fuels in the total olefins concentration range from 0.2 % to 18.2 % by volume as measured by Test Method D6839. The applicable Test Method D1319 range for total olefins is from 0.6 % to 20.6 % by volume as reported by Test Method D1319.1.7 This test method includes a relative bias section for reporting benzene based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D3606 (Procedure B) as a possible Test Method D6839 alternative to Test Method D3606 (Procedure B). The Practice D6708 derived correlation equation is only applicable for fuels in the benzene concentration range from 0.52 % to 1.67 % by volume as measured by Test Method D6839.1.8 This test method includes a relative bias section for reporting benzene based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D5580 as a possible Test Method D6839 alternative to Test Method D5580. The Practice D6708 derived correlation equation is only applicable for fuels in the benzene concentration range from 0.52 % to 1.67 % by volume as measured by Test Method D6839.1.9 This test method includes a relative bias section for reporting benzene based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D5769 as a possible Test Method D6839 alternative to Test Method D5769. The Practice D6708 derived correlation equation is only applicable for fuels in the benzene concentration range from 0.52 % to 1.67 % by volume as measured by Test Method D6839.1.10 This test method includes a relative bias section for reporting total aromatics based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D1319 as a possible Test Method D6839 alternative to Test Method D1319. The Practice D6708 derived correlation equation is only applicable for fuels in the total aromatics concentration range from 14.3 % to 31.2 % by volume as measured by Test Method D6839.1.11 This test method includes a relative bias section for reporting total aromatics based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D5580 as a possible Test Method D6839 alternative to Test Method D5580. The Practice D6708 derived correlation equation is only applicable for fuels in the total aromatics concentration range from 14.3 % to 31.2 % by volume as measured by Test Method D6839.1.12 This test method includes a relative bias section for reporting total aromatics based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D5769 as a possible Test Method D6839 alternative to Test Method D5769. The Practice D6708 derived correlation equation is only applicable for fuels in the total aromatics concentration range from 14.3 % to 30.1 % by volume as measured by Test Method D6839.1.13 This test method includes a relative bias section for reporting total olefins based on Practice D6708 accuracy assessment between Test Method D6839 and Test Method D6550 as a possible Test Method D6839 alternative to Test Method D6550. The Practice D6708 derived correlation equation is only applicable for fuels in the total olefins concentration range from 1.5 % to 17.2 % by volume as measured by Test Method D6839.1.14 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.15 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.16 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Crude petroleum contains sulfur compounds, most of which are removed during refining. However, of the sulfur compounds remaining in the petroleum product or introduced into the fuel during storage and distribution, some can have a corroding action on various metals and this corrosivity is not necessarily related directly to the total sulfur content. The effect can vary according to the chemical types of sulfur compounds present. The silver strip corrosion test is designed to assess the relative degree of corrosivity of a petroleum product towards silver and silver alloys.5.2 Under some circumstances, reactive sulfur compounds present in automotive spark-ignition engine fuels can tarnish or even corrode silver alloy fuel gauge in-tank sender units or silver-plated bearings (in 2-stroke cycle engines). To minimize or prevent the failure of silver alloy in-tank sender units by tarnish or corrosion, Specification D4814 requires that fuels shall pass a silver strip corrosion test.1.1 This test method covers the determination of the corrosiveness to silver by automotive spark-ignition engine fuel (for example, gasoline), as defined by Specification D4814 or similar specifications in other jurisdictions, having a vapor pressure no greater than 124 kPa (18 psi) at 37.8 °C (100 °F) by one of two procedures.1.1.1 Procedure A—Involves the use of a pressure vessel.1.1.2 Procedure B—Involves the use of a vented test tube.1.2 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The ID and CD values and the DCN value determined by this test method provides a measure of the ignition characteristics of diesel fuel oil used in compression ignition engines.5.2 This test can be used by engine manufacturers, petroleum refiners and marketers, and in commerce as a specification aid to relate or match fuels and engines.5.3 The relationship of diesel fuel oil DCN determinations to the performance of full-scale, variable-speed, variable-load diesel engines is not completely understood.5.4 This test can be applied to non-conventional diesel fuels.5.5 This test determines ignition characteristics and requires a sample of approximately 370 mL and a test time of approximately 30 min using a fit-for-use instrument.1.1 This test method covers the quantitative determination of the derived cetane number of conventional diesel fuel oils, diesel fuel oils containing cetane number improver additives, and is applicable to products typical of Specification D975, Grades No.1-D and 2-D regular, low and ultra-low-sulfur diesel fuel oils, European standard EN590, and Canadian standards CAN/CGSB-3.517, CAN/CGSB-3.520, and CAN/CGSB-3.522. The test method may be applied to the quantitative determination of the derived cetane number of biodiesel, blends of diesel fuel oils containing biodiesel material (for example, Specifications D975, D6751, and D7467), and diesel fuel oil blending components.1.2 This test method utilizes a constant volume combustion chamber with direct fuel injection into heated, compressed synthetic air. A dynamic pressure wave is produced from the combustion of the sample. An equation converts the ignition delay and the combustion delay determined from the dynamic pressure curve to a derived cetane number (DCN).1.3 This test method covers the ignition delay ranging from 1.9 ms to 25 ms and combustion delay ranging from 2.5 ms to 160 ms (30 DCN to 70 DCN). However, the precision stated only covers the range of DCN results from 38.45 to 64.35.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Crude petroleum contains sulfur compounds, most of which are removed during refining. However, of the sulfur compounds remaining in the petroleum product, some can have a corroding action on various metals and this corrosivity is not related to the total sulfur content. In addition, fuels can become contaminated by corrosive sulfur compounds during storage and distribution. The corrosive effect can vary according to the chemical types of sulfur compounds present.4.2 The silver strip corrosion test is designed to assess the relative degree of corrosivity of a petroleum product towards silver and silver alloys.4.3 Reactive sulfur compounds present in automotive spark-ignition engine fuels under some circumstances can corrode or tarnish silver alloy fuel gauge in-tank sender units (and silver-plated bearings in some 2-stroke cycle engines). To minimize or prevent the failure of silver alloy in-tank sender units by corrosion or tarnish, Specification D4814 requires that fuels shall pass the silver strip corrosion test.1.1 This test method covers the determination of the corrosiveness to silver by automotive spark-ignition engine fuel, as defined by Specification D4814, or similar specifications in other jurisdictions, having a vapor pressure no greater than 124 kPa (18 psi) at 37.8 °C (100 °F), by one of two procedures. Procedure A involves the use of a pressure vessel, whereas Procedure B involves the use of a vented test tube.1.2 The result of the test is based on a visual rating that is classified as an integer in the range from 0 to 4 as defined in Table 1.1.3 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 6.1 and Section 7.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Test Method—The data obtained from the use of this test method provide a comparative index of the fuel-saving capabilities of automotive engine oils under repeatable laboratory conditions. A BL has been established for this test to provide a standard against which all other oils can be compared. The BL oil is an SAE 20W-30 grade fully formulated lubricant. The test procedure was not designed to give a precise estimate of the difference between two test oils without adequate replication. The test method was developed to compare the test oil to the BL oil. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.5.2 Use—The Sequence VIF test method is useful for engine oil fuel economy specification acceptance. It is used in specifications and classifications of engine lubricating oils, such as the following:5.2.1 Specification D4485.5.2.2 API 1509.5.2.3 SAE Classification J304.5.2.4 SAE Classification J1423.1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty trucks with gross vehicle weight 3856 kg or less. The tests are conducted using a specified spark-ignition engine with a displacement of 3.6 L (General Motors)4 on a dynamometer test stand. It applies to multi viscosity oils used in these applications.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct equivalent such as the units for screw threads, National Pipe threads/diameters, tubing size, and single source supply equipment specifications. Additionally, Brake Fuel Consumption (BSFC) is measured in kilograms per kilowatt-hour.1.3 This test method is arranged as follows:  SectionIntroduction   1Referenced Documents 2Terminology 3Summary of Test Method 4Significance and Use 5Apparatus 6General 6.1Test Engine Configuration 6.2Laboratory Ambient Conditions 6.3Engine Speed and Torque Control 6.4Dynamometer 6.4.1Dynamometer Torque 6.4.2Engine Cooling System 6.5External Oil System 6.6Fuel System 6.7Fuel Flow Measurement 6.7.2Fuel Temperature and Pressure Control to the Fuel Flow Meter 6.7.3Fuel Temperature and Pressure Control to Engine Fuel Rail 6.7.4Fuel Supply Pumps 6.7.5Fuel Filtering 6.7.6Engine Intake Air Supply 6.8Intake Air Humidity 6.8.1Intake Air Filtration 6.8.2Intake Air Pressure Relief 6.8.3Temperature Measurement 6.9Thermocouple Location 6.9.5AFR Determination 6.10Exhaust and Exhaust Back Pressure Systems 6.11Exhaust Manifolds 6.11.1Laboratory Exhaust System 6.11.2Exhaust Back Pressure 6.11.3Pressure Measurement and Pressure Sensor Locations 6.12Engine Oil 6.12.2Fuel to Fuel Flow meter 6.12.3Fuel to Engine Fuel Rail 6.12.4Exhaust Back Pressure 6.12.5Intake Air 6.12.6Intake Manifold Vacuum/Absolute Pressure 6.12.7Coolant Flow Differential Pressure 6.12.8Crankcase Pressure 6.12.9Engine Hardware and Related Apparatus 6.13Test Engine Configuration 6.13.1ECU (Power Control Module) 6.13.2Thermostat Block-Off Adapter Plate 6.13.3Wiring Harness 6.13.4Oil Pan 6.13.5Engine Water Pump Adapter Plate 6.13.6Thermostat Block-Off Plate 6.13.7Oil Filter Adapter Plate 6.13.8Modified Throttle Body Assembly 6.13.9Fuel Rail 6.13.10Miscellaneous Apparatus Related to Engine Operation 6.14Reagents and Materials 7Engine Oil 7.1Test Fuel 7.2Engine Coolant 7.3Cleaning Materials 7.4Preparation of Apparatus 8Test Stand Preparation 8.2Engine Preparation 9Cleaning of Engine Parts 9.3Engine Assembly Procedure 9.4General Assembly Instructions 9.4.1Bolt Torque Specifications 9.4.2Sealing Compounds 9.4.3Harmonic Balancer 9.4.5Thermostat 9.4.6Coolant Inlet 9.4.7Oil Filter Adapter 9.4.8Dipstick Tube 9.4.9Sensors, Switches, Valves, and Positioner’s 9.4.10Ignition System 9.4.11Fuel Injection System 9.4.12Intake Air System 9.4.13Engine Management System 9.4.14Accessory Drive Units 9.4.15Exhaust Manifolds 9.4.16Engine Flywheel and Guards 9.4.17Lifting of Assembled Engines 9.4.18Engine Mounts 9.4.19Non-Phased Camshaft Gears 9.4.20Internal Coolant Orifice 9.4.21Calibration 10Stand/Engine Calibration 10.1Procedure 10.1.1Reporting of Reference Results 10.1.2Analysis of Reference/Calibration Oils 10.1.3Instrument Calibration 10.2Engine Torque Measurement System 10.2.3Fuel Flow Measurement System 10.2.4Coolant Flow Measurement System 10.2.5Thermocouple and Temperature Measurement System 10.2.6Humidity Measurement System 10.2.7Other Instrumentation 10.2.8Test Procedure 11External Oil System 11.1Flush Effectiveness Demonstration 11.2Preparation for Oil Charge 11.3Initial Engine Start-Up 11.4New Engine Break-In 11.5Oil Charge for Break-In 11.5.2Break-In Operating Conditions 11.5.3Standard Requirements for Break-In 11.5.4Routine Test Operation 11.6Start-Up and Shutdown Procedures 11.6.1Flying Flush Oil Exchange Procedures 11.6.2Test Operating Stages 11.6.3Stabilization to Stage Conditions 11.6.4Stabilized BSFC Measurement Cycle 11.6.5BLB1 Oil Flush Procedure for BL Oil Before Test Run 1 11.6.6BSFC Measurement of BLB1 Oil Before Test Oil 11.6.7BLB2 Oil Flush Procedure for BL Oil Before Test Oil Run 2 11.6.8BSFC Measurement of BLB2 Oil Before Test Oil 11.6.9Percent Delta Calculation for BLB1 vs. BLB2 11.6.10Test Oil Flush Procedure 11.6.11Test Oil Aging, Phase I 11.6.12BSFC Measurement of Aged (Phase I) Test Oil 11.6.13Test Oil Aging, Phase II 11.6.14BSFC Measurement of Aged (Phase II) Test Oil 11.6.15Oil Consumption and Sampling 11.6.16Flush Procedure for BL Oil (BLA) After Test Oil 11.6.17General Test Data Logging Forms 11.6.18Diagnostic Review Procedures 11.6.19Determination of Test Results 12Final Test Report 13Precision and Bias 14Keywords 15Annexes  ASTM Test Monitoring Center Organization Annex A1ASTM Test Monitoring Center: Calibration Procedures Annex A2ASTM Test Monitoring Center: Maintenance Activities Annex A3ASTM Test Monitoring Center: Related Information Annex A4Detailed Specifications and Drawings of Apparatus Annex A5Oil Heater Bolton 255 Refill Procedure Annex A6Engine Part Number Listing Annex A7Safety Precautions Annex A8Sequence VIF Test Report Forms and Data Dictionary Annex A9Statistical Equations for Mean and Standard Deviations Annex A10Determining the Oil Sump Full Level & Consumption Annex A11Fuel Injection Evaluation Annex A12Pre-test Maintenance Checklist Annex A13Blow-by Ventilation System Requirements Annex A14Calculation of Test Results Annex A15Calculation of Un-weighted Baseline Shift Annex A16Non-Phased Cam Gear and Position Actuator Installation and GM Short Block Assembly Procedure Annex A17Appendix  Procurement of Test Methods Appendix X11.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 1058元 / 折扣价: 900 加购物车

在线阅读 收 藏

4.1 This test method can be used for quantitative determination of asphalt content in asphalt mixture and pavement samples for quality control, specification acceptance, and mixture evaluation studies. This test method does not require the use of solvents. Aggregate obtained by this test method may be used for gradation analysis according to Test Method D5444.1.1 This test method covers the determination of asphalt content of asphalt mixture and asphalt pavement samples by removing the asphalt cement in an ignition furnace. The means of sample heating may be the convection method or direct irradiation method.NOTE 1: Aggregate obtained by this test method may be used for sieve analysis. Particle size degradation may occur with some aggregates.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers the methanol fuel blend, M70-M85, for use in ground vehicles that run on automotive spark-ignition engines. Fuels are grouped into three vapor pressure classes (Classes 1, 2, and 3) on the basis of seasonal and geographical volatility. The fuel blends shall undergo chemical analysis for methanol, higher alcohols, hydrocarbon/aliphatic ether, acidity as acetic acid, solvent washed and unwashed gum content, total chlorine as chloride, lead, phosphorus, water, sulfur, and inorganic chloride. The product's appearance shall be clear and bright, visibly free of suspended or precipitated contaminants.1.1 This specification covers the requirements for automotive fuel blends of methanol and gasoline for use in ground vehicles equipped with methanol-capable flexible-fuel, and dedicated methanol spark-ignition engines. Fuel produced to this specification contains 51 % to 85 % by volume methanol. This fuel is sometimes referred to at retail as “M85.” Appendix X1 discusses the significance of the properties specified. Appendix X2 presents the current status in the development of a luminosity test procedure (flame visibility) for methanol fuel blends (M51–M85).1.2 The vapor pressure of methanol fuel blends is varied for seasonal climatic changes. Vapor pressure is increased at lower temperatures to ensure adequate vehicle operability and safety. Methanol content and selection of gasoline blendstocks are adjusted by the blender to meet these vapor pressure requirements.1.3 The United States government has established various programs for alternative fuels. Many of the definitions of alternative fuel used by these programs can be more or less restrictive than the requirements of this specification. See Annex A1 for additional information on alternative fuels containing methanol.1.4 The values stated in SI units are to be regarded as the standard.1.4.1 Exception—Non-SI units are provided for information only. In most cases, U.S. federal regulations specify non-SI units.1.5 The following precautionary caveat pertains only to the test method portions–Appendix X2 of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Knowledge of the specified individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons may be determined through the use of this test method.1.1 This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels and their mixtures containing oxygenate blends (MTBE, ETBE, ethanol, and so forth) with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels.1.2 Based on the cooperative study results, individual component concentrations and precision are determined in the range of 0.01 % mass to approximately 30 % mass. The procedure may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the procedure is used for components with concentrations outside the specified ranges.1.3 The test method also determines methanol, ethanol, t-butanol, methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), t-amyl methyl ether (TAME) in spark ignition engine fuels in the concentration range of 1 % mass to 30 % mass. However, the cooperative study data provided sufficient statistical data for MTBE only.1.4 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this test method is utilized to estimate bulk hydrocarbon group-type composition (PONA) the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic (for example, virgin naphthas), or both, constituents above n-octane may reflect significant errors in PONA type groupings. Based on the gasoline samples in the interlaboratory cooperative study, this procedure is applicable to samples containing less than 25 % mass of olefins. However, some interfering coelution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Caution should also be exercised when analyzing olefin-free samples using this test method as some of the paraffins may be reported as olefins since analysis is based purely on retention times of the eluting components.1.4.1 Total olefins in the samples may be obtained or confirmed, or both, if necessary, by Test Method D1319 (percent volume) or other test methods, such as those based on multidimensional PONA type of instruments (Test Method D6839).1.5 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744, or equivalent. Other compounds containing oxygen, sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Methods D4815 and D5599 for oxygenates, and D5623 for sulfur compounds, or equivalent.1.6 Annex A1 of this test method compares results of the test procedure with other test methods for selected components, including olefins, and several group types for several interlaboratory cooperative study samples. Although benzene, toluene, and several oxygenates are determined, when doubtful as to the analytical results of these components, confirmatory analyses can be obtained by using specific test methods.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

5.1 Knowledge of the individual component composition (speciation) of gasoline fuels and blending stocks is useful for refinery quality control and product specification. Process control and product specification compliance for many individual hydrocarbons can be determined through the use of this test method.5.2 This test method is adopted from earlier development and enhancement.4,5,6,7 The chromatographic operating conditions and column tuning process, included in this test method, were developed to provide and enhance the separation and subsequent determination of many individual components not obtained with previous single-column analyses. The column temperature program profile is selected to afford the maximum resolution of possible co-eluting components, especially where these are of two different compound types (for example, a paraffin and a naphthene).5.3 Although a majority of the individual hydrocarbons present in petroleum distillates are determined, some co-elution of compounds is encountered. If this test method is utilized to determine bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic, or both, constituents above octane may reflect significant errors in PONA-type groupings.5.4 If water is or is suspected of being present, its concentration is determined by the use of Test Method D1744. Other compounds containing oxygen, sulfur, nitrogen, and so forth may also be present, and may co-elute with the hydrocarbons. When known co-elution exists, these are noted in the test method data tables. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Method D4815 and D5599 for oxygenates, Test Method D5580 for aromatics, and Test Method D5623 for sulfur compounds.1.1 This test method covers the determination of individual hydrocarbon components of spark-ignition engine fuels and their mixtures containing oxygenate blends (MTBE, ETBE, ethanol, and so forth) with boiling ranges up to 225 °C. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels.1.2 Based on the cooperative study results, individual component concentrations and precision are determined in the range from 0.01 % to approximately 30 % by mass. The test method may be applicable to higher and lower concentrations for the individual components; however, the user must verify the accuracy if the test method is used for components with concentrations outside the specified ranges.1.3 This test method also determines methanol, ethanol, t-butanol, methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), and t-amyl methyl ether (TAME) in spark ignition engine fuels in the concentration range from 1 % to 30 % by mass. However, the cooperative study data provided insufficient statistical data for obtaining a precision statement for these compounds.1.4 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this test method is utilized to estimate bulk hydrocarbon group-type composition (PONA), the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of naphthenic (for example, virgin naphthas) constituents above n-octane may reflect significant errors in PONA-type groupings. Based on the gasoline samples in the interlaboratory cooperative study, this test method is applicable to samples containing less than 25 % by mass of olefins. However, some interfering co-elution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Annex A1 of this test method compares results of the test method with other test methods for selected components, including olefins, and several group types for several interlaboratory cooperative study samples. Although benzene, toulene, and several oxygenates are determined, when doubtful as to the analytical results of these components, confirmatory analyses can be obtained by using the specific test methods listed in the reference section.1.4.1 Total olefins in the samples may be obtained or confirmed, or both, if necessary, by Test Method D1319 (percent by volume) or other test methods, such as those based on multidimentional PONA-type of instruments.1.5 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744 or equivalent. Other compounds containing oxygen, sulfur, nitrogen, and so forth, may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Methods D4815 and D5599 for oxygenates, and Test Method D5623 for sulfur compounds, or equivalent.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983元 / 折扣价: 836 加购物车

在线阅读 收 藏

4.1 Most organic liquids and solids will ignite in a pressurized oxidizing gas atmosphere if heated to a sufficiently high temperature and pressure. This procedure provides a numerical value for the temperature at the onset of ignition under carefully controlled conditions. Means for extrapolation from this idealized situation to the description, appraisal, or regulation of fire and explosion hazards in specific field situations, are not established. Ranking of the ignition temperatures of several materials in the standard apparatus is generally in conformity with field experience.4.2 The temperature at which material will ignite spontaneously (AIT) will vary greatly with the geometry of the test system and the rate of heating. To achieve good interlaboratory agreement of ignition temperatures, it is necessary to use equipment of approximately the dimensions described in the test method. It is also necessary to follow the described procedure as closely as possible.4.3 The decomposition and oxidation of some fully fluorinated materials releases so little energy that there is no clear-cut indication of ignition. Nor will there be a clear indication of ignition if a sample volatilizes, distilling to another part of the reaction vessel, before reaching ignition temperature.1.1 This test method covers the determination of the temperature at which liquids and solids will spontaneously ignite. These materials must ignite without application of spark or flame in a high-pressure oxygen-enriched environment.1.2 This test method is intended for use at pressures of 2.1 MPa to 20.7 MPa [300 psi to 3000 psi]. The pressure used in the description of the method is 10.3 MPa [1500 psi], and is intended for applicability to high pressure conditions. The test method, as described, is for liquids or solids with ignition temperature in the range from 60 °C to 500 °C [140 °F to 932 °F].NOTE 1: Test Method G72/G72M normally utilizes samples of approximately 0.20 ± 0.03-g mass, a starting pressure of 10.3 MPa [1500 psi] and a temperature ramp rate of 5 °C/min. However, Autogenous Ignition Temperatures (AIT) can also be obtained under other test conditions. Testing experience has shown that AIT testing of volatile liquids can be influenced by the sample pre-conditioning and the sample mass. This will be addressed in the standard as Special Case 1 in subsection 8.2.2. Testing experience has also shown that AIT testing of solid or non-volatile liquid materials at low pressures (that is, < 2.1 MPa) can be significantly influenced by the sample mass and the temperature ramp rate. This will be addressed in the standard as Special Case 2, in subsection 8.2.3. Since the AIT of a material is dependent on the sample mass/configuration and test conditions, any departure from the standard conditions normally used for Test Method G72/G72M testing should be clearly indicated in the test report.1.3 This test method is for high-pressure pure oxygen. The test method may be used in atmospheres from 0.5 % to 100 % oxygen.1.4 An apparatus suitable for these requirements is described. This test method could be applied to higher pressures and materials of higher ignition temperature. If more severe requirements or other oxidizers than those described are desired, care must be taken in selecting an alternative safe apparatus capable of withstanding the conditions.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test standard describes how to evaluate the relative sensitivity of materials and components to dynamic pressure impacts by various gaseous fluid media (can include gas mixtures).4.2 Changes or variations in test specimen configurations, thickness, preparation, and cleanliness can cause a significant change in their impact ignition sensitivity/reaction. For material tests, the test specimen configuration shall be specified on the test report.4.3 Changes or variation in the test system configuration from that specified herein may cause a significant change in the severity produced by a dynamic pressure surge of the gaseous media.4.4 A reaction is indicated by an abrupt increase in test specimen temperature, by obvious changes in odor, color, or material appearance, or a combination thereof, as observed during post-test examinations. Odor alone is not considered positive evidence that a reaction has occurred. When an increase in test specimen temperature is observed, a test specimen reaction must be confirmed by visual inspection. To aid with visual inspection, magnification less than 10× can be used.4.5 When testing components, the test article must be disassembled and the nonmetallic materials examined for evidence of ignition after completion of the specified pressure surge cycles.4.6 Ignition or precursors to ignition for any test sample shall be considered a failure and are indicated by burning, material loss, scorching, or melting of a test material detected through direct visual means. Ignition is often indicated by consumption of the non-metallic material under test, whether as an individual material or within a component. Partial ignition can also occur, as shown in Fig. 3a, b, and c, and shall also be considered an ignition (failure) for the purpose of this test standard.FIG. 3 a Untested PCTFE (10X Magnification) (Polychlorotrifluoroethylene) Sample.FIG. 3 b Untested Nylon (PA, polyamide) Valve Seat (10X magnification) (continued)FIG. 3 c Untested Pin-Index Sealing Washer (10X magnification) (continued)NOTE 1: For the purpose of this standard, test samples that visually appear in these conditions, or similar, are considered to be representative of ignition.FIG. 3 Photographs Representing Partial Reactions Including Scorching, Discoloration, Melting and Material Loss or Material Consumption. For the purpose of this standard, test samples that visually appear in these conditions, or similar, are considered to be representative of ignition.NOTE 2: A representative (exemplar) material or component may be requested by the test laboratory personnel for visual comparison with the post-test condition of the test samples.4.7 For material testing, the prescribed procedure is conducted on multiple samples until a statistically significant number of ignitions or no-ignitions, or both, are achieved at various test pressures. The data is then analyzed by a procedure that calculates the median failure pressure (i.e., the 50 % reaction pressure) or the functional form of the ignition probability versus pressure by logistic regression analysis. Materials tested in a similar configuration can be ranked against each other by either of these two criteria. The initial test gas temperature may be varied as required depending on the requirements of the test.4.8 For component testing, a specified number of pressure surge cycles are conducted at a defined test pressure, usually specified by a particular industry test standard. Usually, this pressure is 1.2 times the maximum allowable working pressure of the component. The initial test gas temperature may be varied depending on the requirements of the test; however, most commonly the initial test gas temperature is 60 ± 3 °C.1.1 This test method describes a method to determine the relative sensitivity of nonmetallic materials (including plastics, elastomers, coatings, etc.) and components (including valves, regulators flexible hoses, etc.) to dynamic pressure impacts by gases such as oxygen, air, or blends of gases containing oxygen.1.2 This test method describes the test apparatus and test procedures employed in the evaluation of materials and components for use in gases under dynamic pressure operating conditions up to gauge pressures of 69 MPa and at elevated temperatures.1.3 This test method is primarily a test method for ranking of materials and qualifying components for use in gaseous oxygen. The material test method is not necessarily valid for determination of the sensitivity of the materials in an “as-used” configuration since the material sensitivity can be altered because of changes in material configuration, usage, and service conditions/interactions. However, the component testing method outlined herein can be valid for determination of the sensitivity of components under service conditions. The current provisions of this method were based on the testing of components having an inlet diameter (ID bore) less than or equal to 14 mm (see Note 1).1.4 A 5 mm Gaseous Fluid Impact Sensitivity (GFIS) test system and a 14 mm GFIS test system are described in this standard. The 5 mm GFIS system is utilized for materials and components that are directly attached to a high-pressure source and have minimal volume between the material/component and the pressure source. The 14 mm GFIS system is utilized for materials and components that are attached to a high pressure source through a manifold or other higher volume or larger sized connection. Other sizes than these may be utilized but no attempt has been made to characterize the thermal profiles of other volumes and geometries (see Note 1).NOTE 1: The energy delivered by this test method is dependent on the gas volume being rapidly compressed at the inlet to the test specimen or test article. Therefore the geometry of the upstream volume (diameter and length) is crucial to the test and crucial to the application of the results to actual service conditions. It is therefore recommended that caution be exercised in applying the results of this testing to rapid pressurization of volumes larger than those standardized by this test method. This energy delivered by this standard is based on the rapid compression of the volume in either a 5 mm ID by 1000 mm long impact tube or a 14 mm ID by 750 mm long impact tube. These two upstream volumes are specified in this standard based on historic application within the industry.1.5 This test method can be utilized to provide batch-to-batch comparison screening of materials when the data is analyzed according to the methods described herein. Acceptability of any material by this test method may be based on its 50 % reaction pressure or its probability of ignition based on a logistic regression analysis of the data (described herein).1.6 Many ASTM, CGA, and ISO test standards require ignition testing of materials and components by gaseous fluid impact, also referred to as adiabatic compression testing. This test method provides the test system requirements consistent with the requirements of these other various standards. The pass/fail acceptance criteria may be provided within other standards and users should refer to those standards. Pass/fail guidance is provided in this standard such as that noted in section 4.6. This test method is designed to ensure that consistent gaseous fluid impact tests are conducted in different laboratories.1.7 The criteria used for the acceptance, retest, and rejection, or any combination thereof of materials and components for any given application shall be determined by the user and are not fixed by this method. However, it is recommended that at a minimum the 95 % confidence interval be established for all test results since ignition by this method is inherently probabilistic and should be treated by appropriate statistical methods.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautions see Section 7.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏
92 条记录,每页 15 条,当前第 2 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页