微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 819元 / 折扣价: 697 加购物车

在线阅读 收 藏

定价: 481元 / 折扣价: 409 加购物车

在线阅读 收 藏

5.1 It is well known that modern electrical appliances, incorporating electric motors that use carbon brushes for commutation, may emit aerosolized, particles into the surrounding environment. This test method determines the initial, fractional, filtration efficiency of a vacuum cleaner system, taking those emissions into consideration.5.2 For all vacuum cleaner systems tested, the total emissions of the unit, whatever the source(s), will be counted at each of the six particle size levels identified in the test procedure. This test method determines the initial, fractional filtration efficiency of a vacuum cleaner system, with or without the motor emissions mathematically removed in the calculation of efficiency.1.1 This test method may be used to determine the initial, fractional, filtration efficiency of household and commercial canister (tank-type), stick, hand-held, upright, and utility vacuum cleaner systems.1.1.1 Water-filtration vacuum cleaners which do not utilize a replaceable dry media filter located between the water-based filter and cleaning air exhaust are not included in this test method. It has been determined that the exhaust of these vacuum cleaners is not compatible with the specified discrete particle counter (DPC) procedure.1.2 The initial, fractional, filtration efficiencies of the entire vacuum cleaner system, at six discrete particle sizes (0.3, 0.5, 0.7, 1.0, 2.0, and >3 μm), is derived by counting upstream challenge particles and the constituent of downstream particles while the vacuum cleaner system is being operated in a stationary test condition.1.3 The vacuum cleaner system is tested either at the floor nozzle, the end of the hose (handle), or at the vacuum cleaner inlet (for handheld products) at the normal airflow rate.1.4 The vacuum cleaner system is tested with a new filter(s) installed, and with no preliminary dust loading. The fractional efficiencies determined by this test method shall be considered initial system filtration efficiencies.1.5 Neutralized potassium chloride (KCl) is used as the challenge media in this test method.1.6 One or two particle counters may be used to satisfy the requirements of this test method. If using one counter, flow control is required to switch between sampling the upstream and downstream air sampling probes.1.7 To efficiently utilize this test method, automated test equipment and computer data acquisition is recommended.1.8 Different sampling parameters, flow rates, and so forth, for the specific applications of the equipment and test procedure may provide equivalent results. It is beyond the scope of this test method to define those various possibilities.1.9 This test method is limited to the test apparatus, or its equivalent, as described in this document.1.10 This test method is not intended or designed to provide any measure of the health effects or medical aspects of vacuum cleaning.1.11 This test method is not intended or designed to determine the integrity of HEPA filtration assemblies used in vacuum cleaner systems employed in nuclear and defense facilities.1.12 The inch-pound system of units is used in this test method, except for the common usage of the micrometer, μm, for the description of particle size which is a SI unit.1.13 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.14 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This practice allows the user to compute the true hydraulic efficiency of a pumped well in a confined aquifer from a constant rate pumping field test. The procedures described constitute the only valid method of determining well efficiency. Some practitioners have confused well efficiency with percentage of head loss associated with laminar flow, a parameter commonly determined from a step-drawdown test. Well efficiency, however, cannot be determined from a step-drawdown test but only can be determined from a constant rate test.5.2 Assumptions: 5.2.1 Control well discharges at a constant rate, Q.5.2.2 Control well is of infinitesimal diameter.5.2.3 Data are obtained from the control well and, if available, a number of observation wells.5.2.4 The aquifer is confined, homogeneous, and extensive. The aquifer may be anisotropic, and if so, the directions of maximum and minimum hydraulic conductivity are horizontal and vertical, respectively.5.2.5 Discharge from the well is derived exclusively from storage in the aquifer.5.3 Calculation Requirements—For the special case of partially penetrating wells, application of this practice may be computationally intensive. The function fs shown in Eq 6 should be evaluated using arbitrary input parameters. It is not practical to use existing, somewhat limited, tables of values for fs and, because this equation is rather formidable, it may not be tractable by hand. Because of this, it is assumed the practitioner using this practice will have available a computerized procedure for evaluating the function fs. This can be accomplished using commercially available mathematical software including some spreadsheet applications. If calculating fs is not practical, it is recommended to substitute the Kozeny equation for the Hantush equation as previously described.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.NOTE 2: Commercially available software is available for the calculating, graphing, plotting, and analyses of this practice. The user is responsible for verifying the correctness of the formulas, graphs, plots and analyses of the software.1.1 This practice describes an analytical procedure for determining the hydraulic efficiency of a production well in a confined aquifer. It involves comparing the actual drawdown in the well to the theoretical minimum drawdown achievable and is based upon data and aquifer coefficients obtained from a constant rate pumping test.1.2 This analytical practice is used in conjunction with the field procedure, Test Method D4050.1.3 The values stated in inch-pound units are to be regarded as standard, except as noted below. The values given in parentheses are mathematical conversions to SI units, which are provided for information only and are not considered standard. The reporting of results in units other than inch-pound shall not be regarded as nonconformance with this standard.1.3.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs.1.4 Limitations—The limitations of the technique for determination of well efficiency are related primarily to the correspondence between the field situation and the simplifying assumption of this practice.1.5 All observed and calculated values shall conform to the guidelines for significant digits and round established in Practice D6026, unless superseded by this standard.1.5.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported date to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis method for engineering design.1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of the practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without the consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method provides an easy, accurate, and reproducible method for determination of shielding factors (attenuation ratios) in simple alternating magnetic fields.5.2 Since the sensing or pickup coil is of finite size, the measured shielding factor tends to be the average value for the space enclosed by the coil. Due care is required when interpreting results when the coil is located near an opening in the shield.5.3 This test method is suitable for design, specification acceptance, service evaluation, quality assurance, and research purposes on magnetic shields.5.4 Provided geometrically identical shields are compared, this test method is also suitable for evaluation and grading of magnetic shielding materials.1.1 This test method covers the means for determining the performance quality of a magnetic shield when placed in a magnetic field of alternating polarity.1.2 This test method provides a means of evaluating and grading magnetic shielding materials to determine their suitability for use in the production of magnetic shields.1.3 This test method shall be used in conjunction with and shall conform to the requirements of Practice A34/A34M.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The measurement of particulate matter emission rates is an important test method widely used in the practice of air pollution control.5.1.1 These measurements, when approved by federal or state agencies, are often required for the purpose of determining compliance with regulations and statutes.5.1.2 The measurements made before and after design modifications are necessary to demonstrate the effectiveness of design changes in reducing emissions and make this standard an important tool in manufacturer’s research and development programs.5.2 Measurement of heating efficiency provides a uniform basis for comparison of product performance that is useful to the consumer. It is also required to relate emissions produced to the useful heat production.5.3 This is a laboratory method and is not intended to be fully representative of all actual field use. It is recognized that users of hand-fired wood burning equipment have a great deal of influence over the performance of any wood-burning appliance. Some compromises in realism have been made in the interest of providing a reliable and repeatable test method.1.1 This test method applies to wood-fired or automatically fed biomass burning hydronic heating appliances. These appliances transfer heat to the indoor environment through circulation of a liquid heat exchange media such as water or a water-antifreeze mixture.1.2 The test method simulates hand loading of seasoned cordwood or fueling with a specified biomass fuel and measures particulate emissions and delivered heating efficiency at specified heat output rates based on the appliance’s rated heating capacity.1.3 Particulate emissions are measured by the dilution tunnel method as specified in Test Method E2515. Delivered efficiency is determined by measurement of the usable heat output (determined through measurement of the flow rate and temperature change of water circulated through a heat exchanger external to the appliance) and the heat input (determined from the mass of dry fuel burned and its higher heating value). Delivered efficiency does not attempt to account for pipeline loss.1.4 Products covered by this test method include both pressurized and non-pressurized heating appliances intended to be fired with wood or automatically fed biomass fuels. These products are hydronic heating appliances which the manufacturer specifies for outdoor or indoor installation. They are often connected to a heat exchanger by insulated pipes and normally include a pump to circulate heated liquid. They are used to heat structures such as homes, barns, and greenhouses and can heat domestic hot water, spas, or swimming pools.1.4.1 Hydronic heating systems that incorporate a high mass heat storage system that is capable of storing the entire heat output of a standard fuel load are tested by the procedure specified in Annex A1. Systems that incorporate high mass heat storage capable of storing a portion of the output from a standard fuel load are tested by the procedure specified in Annex A2.1.5 Distinguishing features of products covered by this standard include:1.5.1 Manufacturers specify indoor or outdoor installation.1.5.2 A firebox with an access door for hand loading of fuel or a hopper and automated feed system for delivery of particulate fuel such as wood pellets or solid biomass fuel to a burn pot or combustion chamber.1.5.3 Typically a thermostatic control device that controls combustion air supply or fuel delivery, or both, to maintain the liquid in the appliance within a predetermined temperature range provided sufficient fuel is available in the firebox or hopper.1.5.4 A chimney or vent that exhausts combustion products from the appliance.1.6 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6.1 Exception—Metric units are used in 13.1, 13.4.3, Tables 4-6, and A1.11.6.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method measures the initial filtration efficiency of materials by sampling representative volumes of the upstream and downstream latex aerosol concentrations in a controlled airflow chamber.5.2 This test method provides specific test techniques for both manufacturers and users to evaluate materials when exposed to aerosol particle sizes between 0.1 and 5.0 μm.5.2.1 This test method establishes a basis of efficiency comparison between materials.1.1 This test method establishes procedures for measuring the initial particle filtration efficiency of materials using monodispersed aerosols.1.1.1 This test method utilizes light-scattering particle counting in the size range of 0.1 to 5.0 μm and airflow test velocities of 0.5 to 25 cm/s.1.2 The test procedure measures filtration efficiency by comparing the particle count in the feed stream (upstream) to that in the filtrate (downstream).1.3 The values stated in SI units or in other units shall be regarded separately as standard. The values stated in each system must be used independently of the other, without combining values in any way.1.4 The following precautionary caveat pertains only to the test methods portion, Section 10, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Subject to the limitations listed above, the procedure can be used as a research tool to optimize spray equipment and paint formulations as well as to study the relative effect on transfer efficiency of changing operating variables, spray application equipment, and types of coatings.1.1 This test method covers the evaluation and comparison of the transfer efficiency of spray-applied coatings under controlled laboratory conditions.1.2 This test method has been shown to yield excellent intralaboratory reproducibility. Interlaboratory precision is poorer and is highly dependent on closely controlled air flow in the spray booth, the rate at which the paint is delivered to the part, and other variables suggested in the test method.1.3 Limitations: 1.3.1 This laboratory procedure only indicates the direction of the effect of spray variables on transfer efficiency. The magnitude of the effect is determined only by specific plant experience.NOTE 1: This laboratory procedure requires specific equipment and procedures. For those laboratories that do not have access to the type of equipment required a more general laboratory procedure is being prepared as Procedure B.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7 and 8.11.9 and 8.13.2.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Each device has unique flow patterns and turbulence characteristics and may exhibit a wide range of efficiencies as discharge, particle-size distribution, particle density, and flow viscosity (that is, water temperature) changes. The testing procedures described in Section 8 provide a method of measuring the removal efficiency of these devices under a given flow condition, flow viscosity (water temperature), and particle-size distribution and density. Therefore, the results of testing represent the flow, viscosity, and particle-size distribution tested.1.1 This test method concerns measurement of the efficiency of hydrodynamic separators and underground settling devices in removing suspended sediment from simulated stormwater runoff under conditions defined herein. This test method is not intended for use in determining field removal efficiency.1.2 Units tested shall be of a size commonly manufactured, not a scale model. This test method is not intended to address product scaling.1.3 This test method is not for measuring the removal efficiency of filters or the scouring potential of hydrodynamic separators and underground settling devices.1.4 In this test method, only gravity flow operation is addressed—performance of units operating under pressurized conditions is not addressed.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Subject to the limitations listed in 1.3, these test methods can be used to optimize paint application processes.1.1 These test methods cover the determination of the transfer efficiency of spray-applied coatings under general plant conditions. Transfer efficiency is the ratio of paint solids deposited to the total paint solids used during the application process, expressed as a percent.1.2 The transfer efficiency is calculated from the weight or volume of the paint solids sprayed and that of the paint solids deposited on the painted part.1.3 Limitations include the ability to accurately determine the amount of paint solids deposited on the part and the capability of accurate measurement of the amount of paint sprayed.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.NOTE 1: These test methods apply to general plant production equipment and procedures. A method specific to automotive plants is defined in Test Method D5066.NOTE 2: The relationship between volatile organic compound emission rates and transfer efficiency in automobile and light duty truck topcoat operations, EPA 450/3-88-01, referenced in Test Method D5066 does not apply to general production facilities.NOTE 3: A single-point transfer efficiency measurement may not represent the entire process.NOTE 4: The operator and the spray-application equipment-operating conditions during the transfer efficiency measurement should be representative of normal operating conditions.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Section 7, and 10.3.1.NOTE 5: These test methods have not been adopted by federal regulatory agencies for demonstration of compliance with air pollution regulations such as VOC, HAPS, etc.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method describes a procedure for determining the penetration of aerosols through a one- or twostage HEPA filter installation. Testing multiple filter stages as a single unit eliminates the need for: installation of auxiliary aerosol bypass ducts, installation of aerosol injection manifolds between filter stages, and entry of test personnel into contaminated areas. It provides for filter testing without interruption of plant processes and operation of ventilation systems. The procedure is applicable for measuring penetrations requiring sensitivities to 0.1 μm. A challenge concentration of 2.5 × 10 5 particles/cm3 (p/cm3), is required for evaluation of one-filter stage, and 2 × 106 p/cm 3, or about 30 μg/L (assuming unit density), is required to properly evaluate a two-stage HEPA filter system as one unit. This test method can determine the penetration of HEPA filters in the particle-size range from 0.1 to 0.2 μm where the greatest penetration of particles is likely to occur.1.1 This test method covers the procedure and equipment for measuring the penetration of test particles through high-efficiency particulate air (HEPA) filter systems using a laser aerosol spectrometer (LAS). This test method provides the capability of evaluating the overall effectiveness of HEPA filter systems consisting of one or two filter stages. 1.2 The aerosols used for testing have a heterodisperse size distribution in the submicrometer diameter range from 0.1 to 1.0 μm. 1.3 The purpose for conducting in-place filter testing by this test method is in the ability to determine penetration of multi-stage installations, without individual stage tests. Particle penetration as low as 10−8 can be measured by this test method. Also, the LAS provides a measure of penetration for discrete particle sizes. 1.4 Maximum penetration for an installed HEPA filter system is 5 × 10−4 for one filter stage, and 2.5 × 10−7 for two stages in series is recommended. Note 1—Acceptance penetration criteria must be specified in the program, or owners specifications. The penetration criteria suggested in this test method is referenced in Ref (1). 1.5 The values stated in SI units are to be regarded as the standard. 1.6 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 9.6.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The pressure drop results can be added to the pressure drops of other components in an exhaust system to determine the total exhaust fan pressure requirement.5.2 The particulate capture efficiency can be used with known particulate size emission data for a cooking appliance-food product combination to determine the total mass of grease particles captured by the filter, the total mass of grease particles that pass through the filter, and the particle size distribution of the grease particles that pass through the filter. Fig. 1 shows an example particle capture efficiency curve.FIG. 1 Particle Capture Efficiency Example Curve1.1 This test method can be used to determine the grease particle capture efficiency of components and systems used in commercial kitchens to capture grease effluent prior to entering the exhaust duct. The results can be used to select a filter system best suited to a particular application.1.2 This test method is applicable to filter components and systems. The performance information is obtained for new or clean filters and does not include the performance of used or loaded filters.1.3 The filter can be evaluated with respect to the following (where applicable):1.3.1 Pressure drop as a function of airflow through the filter (10.3), and1.3.2 Particulate capture efficiency by particle size (10.4).1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are for information only.1.5 This test method may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test method is a standard procedure for determining the drainage efficiency of an EIFS clad wall assembly.1.1 This test method determines the drainage efficiency of EIFS clad wall assemblies when subjected to a water spray rate in accordance with Test Method E331.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.3 This standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is specifically directed at the spray painting of automobile car and light duty truck bodies. The general principles are applicable to the painting of other automotive parts.5.2 This test method may also be used to measure transfer efficiency in full-sized painting facilities simulating production conditions and operations.1.1 This test method covers procedures for determination of the transfer efficiency (using a weight method) under production conditions for in-plant spray application of automotive paints as outlined in Section 18 of EPA 450/3-88-018.1.2 The transfer efficiency is calculated from the weight of the paint solids sprayed and that deposited on the painted part. The recommended approach involves painting the part directly. Also described is an alternative approach for painting parts covered with aluminum foil.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in 10.1.8.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
24 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页