微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Cyanide and hydrogen cyanide are highly toxic. Regulations have been established to require the monitoring of cyanide in industrial and domestic wastes and surface waters.35.2 This test method is applicable for natural waters, industrial wastewaters and effluents.1.1 This test method is used to determine the concentration of total cyanide in an aqueous wastewater or effluent. This test method detects the cyanides that are free (HCN and CN–) and strong-metal-cyanide complexes that dissociate and release free cyanide when refluxed under strongly acidic conditions.1.2 This test method may not be applicable to process solutions from precious metals mining operations.1.3 This procedure is applicable over a range of approximately 2 to 500 μg/L (parts per billion) total cyanide. Higher concentrations can be measured with sample dilution or lower injection volume.1.4 The determinative step of this test method utilizes flow injection with amperometric detection based on Test Method D6888. Prior to analysis, samples must be distilled with a micro-distillation apparatus described in this test method or with a suitable cyanide distillation apparatus specified in Test Methods D2036.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in 8.6 and Section 9.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice is useful for preparing extracts from fire debris for later analysis by gas chromatography mass spectrometry.4.2 This is a very sensitive separation procedure, capable of isolating quantities smaller than 1/10 μL of ignitable liquid residue from a sample.1.1 This practice describes the procedure for separation of small quantities of ignitable liquid residues from samples of fire debris using an adsorbent material to extract the residue from the static headspace above the sample, then eluting the adsorbent with a solvent.1.2 While this practice is suitable for successfully extracting ignitable liquid residues over the entire range of concentration, the headspace concentration methods are best used when a high level of sensitivity is required due to a very low concentration of ignitable liquid residues in the sample.1.2.1 Unlike other methods of separation and concentration, this practice is essentially nondestructive.1.3 Alternate separation and concentration procedures are listed in the referenced documents (see Practices E1386, E1388, E1413, and E2154).1.4 This practice does not replace knowledge, skill, ability, experience, education, or training and should be used in conjunction with professional judgment.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This practice is useful for preparing extracts from fire debris for subsequent qualitative analysis by gas chromatography mass spectrometry, see Test Method E1618.5.2 The sensitivity of this practice is such that a sample consisting of a laboratory tissue onto which as little as 0.1 µL of ignitable liquid has been deposited, in an otherwise empty sample container, will result in an extract that is sufficient for identification and classification using Test Method E1618 (1).5.2.1 Recovery from fire debris samples will vary, depending on factors including debris temperature, adsorbent temperature, container size, adsorptive material, headspace volume, sampling time and flow rate, and adsorptive competition from the sample matrix (2).5.3 The principal concepts of dynamic headspace concentration are similar to those of static headspace concentration (Practice E3189). The dynamic headspace concentration technique can be more sensitive than the static headspace concentration technique. However, sample containers subjected to dynamic headspace concentration could be unsuitable for re-sampling.5.3.1 Dynamic headspace concentration alters the original composition of the test sample because a portion of the original headspace from the sample container is removed and exchanged with dry inert gas or air. A portion of the concentrated headspace sample should be preserved for potential future analysis, if possible and if required, in accordance with Practice E2451.5.4 Common solid adsorbent/desorption procedure combinations in use are activated carbon/solvent elution, and Tenax4 TA/thermal desorption.5.5 Solid adsorbent/desorption procedure combinations not specifically described in this standard can be used as long as the practice has been validated as outlined in Section 11.1.1 This practice describes the procedure for separation of ignitable liquid residues from fire debris samples using dynamic headspace concentration onto an adsorbent tube, with subsequent solvent elution or thermal desorption.1.2 Dynamic headspace concentration onto an adsorbent tube takes place from a closed, rigid sample container (typically a metal can), using a source of dry inert gas or a vacuum system.1.3 Both positive and negative applied pressure systems for dynamic headspace concentration onto an adsorbent tube are illustrated and described.1.4 This practice is suitable for preparing extracts from fire debris samples containing a range of volumes (µL to mL) of ignitable liquid residues, with sufficient recovery for subsequent qualitative analysis (1).21.5 Alternative headspace concentration methods are listed in Section 2 (see Practices E1388, E1412, E3189, and E2154).1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard cannot replace knowledge, skills, or abilities acquired through education, training, and experience (Practice E2917) and is to be used in conjunction with professional judgment by individuals with such discipline-specific knowledge, skills, and abilities.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Presence of even low concentrations of PVC in recycled PET flakes results in equipment corrosion problems during processing. The PVC contamination level shall dictate the market for use of the recycled polymer in secondary products. Procedures presented in this practice are used to identify the PVC contamination in recycled PET flakes.NOTE 4: These procedures may also be used to estimate the concentration of PVC contamination.1.1 This practice covers four procedures for separation and qualitative identification of poly(vinyl chloride) (PVC) contamination in poly(ethylene terephthalate) (PET) flakes.NOTE 1: Although not presented as a quantitative method, procedures presented in this practice may be used to provide quantitative results at the discretion of the user. The user assumes the responsibility to verify the reproducibility of quantitative results. Data from an independent source suggest a PVC detection level of 200 ppm (w/w) based on an original sample weight of 454 g.1.2 Procedure A is based on different fluorescence of PVC and PET when these polymers are exposed to ultraviolet (UV) light.1.3 Procedure B is an oven test based upon the charring of PVC when it is heated in air at 235°C.1.4 Procedures C and D are dye tests based on differential staining of PVC and PET.NOTE 2: Other polymers (for example, PETG) also absorb the stain or brightener. Such interferences will result in false positive identification of PVC as the contaminant.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazards see Section 8.NOTE 3: There is no known ISO equivalent to this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This guide applies to the evaluation of oil-water separation systems when employed as devices for dewatering oil collected by oil-recovery devices or systems, or both. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This procedure describes a rapid and sensitive method for estimating the stability reserve of an oil. The stability reserve is estimated in terms of a separability number, where a low value of the separability number indicates that there is a stability reserve within the oil. When the separability number is between 0 to 5, the oil can be considered to have a high stability reserve and asphaltenes are not likely to flocculate. If the separability number is between 5 to 10, the stability reserve in the oil will be much lower. However, asphaltenes are, in this case, not likely to flocculate as long as the oil is not exposed to any worse conditions, such as storing, aging, and heating. If the separability number is above 10, the stability reserve of the oil is very low and asphaltenes will easily flocculate, or have already started to flocculate.5.2 This test method can be used by refiners and users of heavy oils, for which this test method is applicable, to estimate the stability reserves of their oils. Hence, this test method can be used by refineries to control and optimize their refinery processes. Consumers of oils can use this test method to estimate the stability reserve of their oils before, during, and after storage.5.3 This test method is not intended for predicting whether oils are compatible before mixing, but can be used for determining the separability number of already blended oils. However, experience shows that oils exhibiting a low separability number are more likely to be compatible with other oils than are oils with high separability numbers.1.1 This test method covers the quantitative measurement, either in the laboratory or in the field, of how easily asphaltene-containing heavy fuel oils diluted in toluene phase separate upon addition of heptane. The result is a separability number (%). See also Test Method D7061.1.2 The test method is limited to asphaltene-containing heavy fuel oils. ASTM specification fuels that generally fall within the scope of this test method are Specification D396, Grade Nos. 4, 5, and 6, Specification D975, Grade No. 4-D, and Specification D2880, Grade Nos. 3-GT and 4-GT. Refinery fractions from which such blended fuels are made also fall within the scope of this test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

5.1 Laminates are made by bonding together two or more layers of material or materials, where each layer might be a single or multi-layer material. When the bonding agent is reactive and requires time to reach full performance, the bond strength is typically measured as a green (un-cured) bond and a cured bond. For processes that intentionally create a nonlaminated edge, that edge is generally used to initiate the bond strength measurement. The techniques described in this practice can be used to initiate separation of plies when a non-laminated edge is not present.1.1 This practice describes techniques for separating plies of laminates made from flexible materials such as cellulose, paper, plastic film, and foil to enable the measurement of the bond strength or ply adhesion of the laminate. This includes laminates made by various processes: adhesive laminates, extrusion coatings, extrusion laminates, and coextrusions.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information purposes only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 6.1.1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This standard practice establishes a method for conducting accelerated laboratory aging of radial passenger or light truck tires, or both, in an oven.5.2 The goal of this practice is to define a scientifically valid protocol for the accelerated laboratory aging of a tire such that certain of its material properties correlate to those of in-service tires (see Appendix X1). This practice does not establish performance limits or tolerances for tire specifications.1.1 This practice describes a method to laboratory age a new tire in an oven to produce changes in certain chemical and physical properties at the belt edges similar to those of tires in-service (see Appendix X1).1.2 This practice is a precursor to conducting an ASTM standard roadwheel test method for laboratory generation of belt separation in radial passenger car and light truck tires.1.3 This practice may not produce representative chemical and physical property changes in any part of the tire except the belt edge.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is used to document the ability of a solid waste resource recovery separator to capture the component(s) of interest in the desired process stream.5.2 The recovery determined in this way is used in conjunction with the purity of the product, as described in Test Method E889.1.1 This test method covers the determination of the recovery of a desired product in a device processing solid waste for the purpose of concentrating a component of interest. The recovery is determined with respect to the amount of the desired component in one output stream (accepts) as opposed to another output stream (rejects). The results of this calculation determine the effectiveness of component separation when coupled with a measure of product purity as described in Test Method E889.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary information is given in Section 6.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method separates asphalts into four well-defined fractions. Analysis of these fractions can be used to evaluate asphalt composition (1, 2).4 For example, one can compare the ratios of the fractions with other asphalt systems to evaluate processing and aging parameters that relate to performance properties of the asphalt.1.1 This test method covers the separation of four defined fractions from petroleum asphalts. The four fractions are defined as saturates, naphthene aromatics, polar aromatics, and iso-octane insoluble asphaltenes. This method can also be used to isolate saturates, naphthene aromatics, and polar aromatics from distillate products such as vacuum gas oils, lubricating oils, and cycle stocks. These distillate products usually do not contain asphaltenes.1.2 The values stated in SI units are to be regarded as standard.1.3 Since a precision estimate for this standard has not been developed, this test method is to be used for research or informational purposes only. Therefore, this standard should not be used for acceptance or rejection of a material for purchasing purposes.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 For the middle distillates whose boiling range is between 170 °C and 400 °C by such distillation methods like Test Method D2887, Procedure A can separate and determine the content of total aromatics and total nonaromatics by SPE and GC analysis of the resulting fractions. The determination of the total content of saturates and aromatics in petroleum middle distillates is useful to investigate the effects of petroleum processes on production of various finished fuels.5.2 The total aromatics content and polycyclic aromatics content are important to characterize the quality of diesel fuels. This test method is demonstrated to be time-saving and eco-friendly by reducing the amount of reagent consumption and avoiding the necessity of solvent evaporation step as required, for example, in such Test Method D2549.5.3 The determination of detailed hydrocarbon composition by mass spectrometry requires a preliminary separation of the sample into representative aromatics and nonaromatics, as in Test Method D2425, where Test Method D2549 is used to separate the distillate fuel. The SPE fractionation procedure described herein may provide a suitable fractionation alternative approach for these mass spectrometric types of methods.5.4 Biodiesel is a blendstock commodity primarily used as a value-added blending component with diesel fuel. Procedure B can provide a separation and determination technique to monitor the FAME content for FAME biodiesel blends.1.1 This test method covers the separation and determination of representative aromatics, nonaromatics, and fatty acid methyl ester (FAME) fractions in middle distillates that boil between 170 °C and 400 °C, including biodiesel blends with up to 20 % by volume of FAME, by solid phase extraction and gas chromatography.1.2 This test method provides two procedures, A and B. Procedure A is applicable to the petroleum-based middle distillates fuel, and Procedure B is applicable to the biodiesel blends with up to 20 % by volume of FAME.1.3 This test method is applicable to middle distillates samples with aromatics content ranging from 5 % to 50 % by mass and biodiesel blends with FAME content in the range of 0.5 % to 20 % by volume. This test method may apply to concentrations outside these ranges, but the precision has not been determined.1.4 For Procedure B, biodiesels in the form of fatty acid ethyl ester (FAEE) can also fully elute into the FAME fraction, and they have the similar FID (flame ionization detector) relative response factors with that of FAME. The determined content of FAME fractions are the sum of concentrations of FAME and FAEE by this test method (see 3.2.5).1.5 From the investigation results obtained for FAME determination, the low concentrations of monoglycerides (usually less than 0.5 % by mass in biodiesel blends) are not detectable under the gas chromatographic (GC) condition of this test method and will not interfere with the determination of FAME by Procedure B. As a result, biodiesel blends, conforming to the requirements of Specification D7467, containing up to 20 % by volume of biodiesel blendstock meeting the requirements in Specification D6751, typically contain concentrations of monoglycerides of less than 0.1 % by mass. The diglycerides and triglycerides, if present, are not detected under the GC condition of this test method due to their higher boiling points.NOTE 1: If a sample is suspected of containing an abnormal FAME biodiesel feedstock than specified in Specification D6751, for example, a sample contaminated with vegetable oil with a high level of total triglycerides, the content of mono-, di-, or tri-glycerides in the isolated FAME fraction may be determined using Test Method D6584. Samples containing biodiesels with a high amount of glycerides than specified in Specification D6751 may contaminate the GC column and not recommended for this test method.1.6 The values stated in acceptable SI units are to be regarded as the standard. No other units of measurement are included in this standard1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Water treatment membrane devices can be used to produce potable water from brackish supplies and seawater as well as to upgrade the quality of industrial water. This standard permits the evaluation of the integrity and performance of membrane elements using visual observations and standard sets of conditions and are for short-term testing (<24 h). This standard can be used to determine changes that may have occurred in the operating characteristics of elements but are not intended to be used for plant design.1.1 This practice covers the inspection, performance testing, autopsy, and analytical work associated with evaluating pressure driven membrane separation elements (microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO)).1.2 This practice is applicable for elements when newly manufactured or at any time during their operation in a water treatment facility. The Analytical section (6.4) covers only membrane surface and foulant analyses.1.3 The data derived from these tests should be evaluated versus newly manufactured elements/bundles or against operating systems when they were initially brought on-stream, or both. Industry norms can also be used for comparative purposes.1.4 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is useful in evaluating the degree to which a grease would separate into fluid and solid components when subjected to high centrifugal forces. Flexible shaft couplings, universal joints, and rolling element thrust bearings are examples of machinery which subject lubricating greases to large and prolonged centrifugal forces. This test method has been found to give results that correlate well with results from actual service. The test method may be run at other conditions with agreement between parties but the precision noted in this test method will no longer apply.31.1 This test method covers a procedure for determining the tendency of lubricating grease to separate oil when subjected to high centrifugal forces.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Problems with extrusion and subsequent processing of the material are caused, in part, by the presence of paper, metal, gels, incompatible polymers, or other extraneous contamination found in polymers.1.1 This practice covers a means to separate the unmolten particles, gels, and impurities contaminating a polymer sample. The procedure may be used to remove gels and incompatible materials that may cause imperfections in the final extruded product. Under pressure, most gels will break up or deform and pass through a wire mesh filter, however high molecular weight gels may not break up or deform.1.2 Materials isolated on a wire mesh filter can be identified by spectroscopic or other analytical means.NOTE 1: Although not presented as a quantitative method, the procedure presented in this practice may be used to provide quantitative results at the discretion of the user. The user assumes the responsibility to verify the reproducibility of quantitative results. Detection limit depends on the mesh size of the filter screen, but the procedure is generally applicable to the separation of immiscible contaminants present at concentrations greater than 0.1 %.1.3 The values stated in SI units are to be regarded as standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Section 8NOTE 2: There is no known ISO equivalent to this standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Uranium and plutonium are used in nuclear reactor fuel and must be analyzed to insure that they meet certain criteria for isotopic composition as described in Specifications C833 and C1008. This practice is used to chemically separate the same mass peak interferences from uranium and plutonium and from other impurities prior to isotopic abundance determination by thermal ionization mass spectrometry.5.2 In those facilities where perchloric acid use is tolerated, the separation in Test Method C698 may be used prior to isotopic abundance determination. Uranium and plutonium concentrations as well as isotopic abundances using thermal ionization mass spectrometry can be determined using this separation and following Test Method C1625.1.1 This practice is for the ion exchange separation of uranium and plutonium from each other and from other impurities for subsequent isotopic analysis by thermal ionization mass spectrometry. Plutonium-238 and uranium-238, and plutonium-241 and americium-241, will appear as the same mass peak and must be chemically separated prior to analysis. Only high purity solutions can be analyzed reliably using thermal ionization mass spectrometry.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
45 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页