
【国外标准】 Standard Test Method for Dry Filterability of Lubricants and Hydraulic Fluids by Mass Flow Technique
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Precision equipment and high pressure hydraulic machinery require filtered lubricants and fluids to prevent damage from the circulation of hard particulate contaminants. Three types of particulate contaminants are present in lubricants and hydraulic fluids: built in contaminants from the machinery assembly process, generated contaminants from equipment wear, and contaminants that enter from external sources.5.2 The ability of lubricants and hydraulic fluids to retain their filterability is critical for efficient and reliable machine performance. Normally, the pressure differential across a filter will increase gradually as the filter accumulates dirt, sludge, and wear debris. In order to prevent the filter from collapsing, bypass valves in the filter assembly open when the differential pressure gets too high. If a filter becomes blocked by precipitating additives or other contaminants, the bypass valve will open. This can lead to an equipment shutdown or circulation of damaging particles throughout the machine.1.1 This test method covers determination of the dry filterability of lubricants and hydraulic fluids based upon mass flow rate measurements through a 0.8 µm membrane after ageing (Note 1). The procedure applies to lubricants and hydraulic fluids that are formulated with American Petroleum Institute (API) Group I, II, III, IV, and certain V base stocks. Products formulated with water or base stocks that are heavier than water are out of scope.NOTE 1: This test method is similar to ISO 13357 but differs from the ISO method in the manner by which filterability is assessed. In ISO 13357, volume flow rates are used to determine filterability. In this test method, mass flow rates are used. Measurements of filterability based on mass flow rates facilitate automation and can be less susceptible to operator error.NOTE 2: Residual water due to atmospheric conditions or contaminants is in scope for these samples and it is typically low for most in process samples.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8385-22
标准名称:
Standard Test Method for Dry Filterability of Lubricants and Hydraulic Fluids by Mass Flow Technique
英文名称:
Standard Test Method for Dry Filterability of Lubricants and Hydraulic Fluids by Mass Flow Technique标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D8223-19 Standard Practice for Evaluation of Fire-Retardant Treated Laminated Veneer Lumber
- ASTM D8225-19 Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature
- ASTM D8226-21ae1 Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition Engine
- ASTM D8227-20 Standard Test Method for Determining the Coefficient of Friction of Synchronizer Lubricated by Mechanical Transmission Fluids (MTF) Using a High-Frequency, Linear-Oscillation (SRV) Test Machine
- ASTM D823-18(2022) Standard Practices for Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels
- ASTM D8232-18 Standard Test Procedures for Measuring the Inclination of Deep Foundations
- ASTM D8236-18 Standard Practice for Preparing an Equilibrium Liquid/Vapor Sample of Live Crude Oil, Condensates, or Liquid Petroleum Products Using a Manual Piston Cylinder for Subsequent Liquid Analysis or Gas Analysis
- ASTM D8239-23 Standard Specification for Performance-Graded Asphalt Binder Using the Multiple Stress Creep and Recovery (MSCR) Test
- ASTM D8240-22e1 Standard Specification for Less-Flammable Synthetic Ester Liquids Used in Electrical Apparatus
- ASTM D8241/D8241M-19 Standard Tables of Body Measurements for Young Men Type, Size Range 32 – 48
- ASTM D8243-19 Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method
- ASTM D8247-19 Standard Test Method for Determination of Total Fluorine and Total Chlorine in Coal by Oxidative Pyrohydrolytic Combustion Followed by Ion Chromatography Detection
- ASTM D8252-23 Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry
- ASTM D8253-21 Standard Test Method for Determination of the Asphaltene Solvency Properties of Bitumen, Crude Oil, Condensate and/or Related Products for the Purpose of Calculating Stability, Compatibility for Blending, Fouling, and Processibility (Manual Microscopy
- ASTM D8254-19 Standard Test Method for Flash and Fire Points of Asphalt by Cleveland Open Cup Tester