
【国外标准】 Standard Test Methods for In Situ Measurement of Masonry Mortar Joint Shear Strength Index
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method provides a means of evaluating the horizontal in-plane shear behavior of mortar joints in existing unreinforced masonry assemblies (see Note 2).NOTE 2: The masonry mortar joint shear strength index obtained by this test method can be related to the masonry wall shear strength by relationships contained in referencing Codes and Standards. For example, formulas relating shear index to wall shear strength are found in Chapter A1 of the International Existing Building Code and Chapter 11 of the Seismic Evaluation and Retrofit of Existing Buildings, ASCE Standard ASCE/SEI 41. The user of this standard is cautioned that these shear strength relationships are typically empirical relationships based on tests of early 20th-century unreinforced brick masonry. These relationships typically assume that wall shear strength is limited by shear of the mortar joints rather than shear through the units5.2 For hollow ungrouted or solid unit masonry construction the shear strength index is measured only for the mortar bed joints vertically adjacent to the unit being tested. When testing hollow ungrouted masonry construction, the shear strength index is based on the horizontal interface between the mortar and the test unit and the masonry above and below the test unit. In the case of multi-wythe construction, the measured mortar joint shear strength index is applicable only to the wythe in which the test unit is located; no headers shall exist immediately above or below the test unit. The contribution of any existing collar joint mortar to the measured shear strength index is neglected, and this may lead to an overestimate of the shear strength index (see Note 3).NOTE 3: Some documents that reference this test method, including ASCE/SEI 41, include a reduction factor to account for the contribution of a filled collar joint to the measured shear strength index.5.3 The test procedure listed for Method A may be conducted as an extension of Test Method C1197. The two-flatjack test, conducted in accordance with Test Method C1197, provides half of the required test setup for Method A. At the completion of both the C1197 and the C1531 Method A test, one would know the deformability of the masonry at the test and the relationship between the expected joint shear strength index and the normal compressive stress.1.1 These test methods cover procedures for the determination of the average in situ mortar joint shear strength index in existing unreinforced solid-unit and ungrouted hollow-unit masonry built with clay or concrete units. Three methods are provided:1.1.1 Method A (with Flatjacks Controlling Normal Compressive Stress)—For determining mortar joint shear strength index when the state of normal compressive stress at the test site is controlled during the test using the flatjack method described in Test Method C1197. Horizontal displacement of the test unit is monitored throughout the test. The test setup for Method A is shown in Fig. 1.FIG. 1 Test Setup—Method ANOTE 1: A paper2 by Francesco Graziotti et. al of Univ. of Pavia included in ASTM STP 1612 discusses alternative methods for interpreting Method A testing results.1.1.2 Method B (without Flatjacks Controlling Normal Compressive Stress)—For determining mortar joint shear strength index when using an estimate of the normal compressive stress at the location of the test site. Horizontal displacement of the test unit is not monitored during this procedure. The test set up for Method B is shown in Fig. 2.FIG. 2 Test Setup—Method B1.1.3 Method C (with Flatjack Applying Horizontal Load)—For determining mortar joint shear strength index using an estimate of the normal compressive stress at the location of the test site, as shown in Fig. 3. Horizontal displacement of the test unit is generally not measured during this procedure.FIG. 3 Test Setup—Method C1.2 The text of this standard refers to notes and footnotes that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C1531-22
标准名称:
Standard Test Methods for In Situ Measurement of Masonry Mortar Joint Shear Strength Index
英文名称:
Standard Test Methods for In Situ Measurement of Masonry Mortar Joint Shear Strength Index标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM C1530/C1530M-23 Standard Specification for Fiber-Cement Roofing Shakes, Shingles, and Slates with Designed Varying Profiles and Thicknesses
- 下一篇: ASTM C1532/C1532M-22 Standard Practice for Selection, Removal, and Shipment of Manufactured Masonry Units and Masonry Specimens from Existing Construction
- 推荐标准
- ASTM D8223-19 Standard Practice for Evaluation of Fire-Retardant Treated Laminated Veneer Lumber
- ASTM D8225-19 Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature
- ASTM D8226-21ae1 Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition Engine
- ASTM D8227-20 Standard Test Method for Determining the Coefficient of Friction of Synchronizer Lubricated by Mechanical Transmission Fluids (MTF) Using a High-Frequency, Linear-Oscillation (SRV) Test Machine
- ASTM D823-18(2022) Standard Practices for Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels
- ASTM D8232-18 Standard Test Procedures for Measuring the Inclination of Deep Foundations
- ASTM D8236-18 Standard Practice for Preparing an Equilibrium Liquid/Vapor Sample of Live Crude Oil, Condensates, or Liquid Petroleum Products Using a Manual Piston Cylinder for Subsequent Liquid Analysis or Gas Analysis
- ASTM D8239-23 Standard Specification for Performance-Graded Asphalt Binder Using the Multiple Stress Creep and Recovery (MSCR) Test
- ASTM D8240-22e1 Standard Specification for Less-Flammable Synthetic Ester Liquids Used in Electrical Apparatus
- ASTM D8241/D8241M-19 Standard Tables of Body Measurements for Young Men Type, Size Range 32 – 48
- ASTM D8243-19 Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method
- ASTM D8247-19 Standard Test Method for Determination of Total Fluorine and Total Chlorine in Coal by Oxidative Pyrohydrolytic Combustion Followed by Ion Chromatography Detection
- ASTM D8252-23 Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry
- ASTM D8253-21 Standard Test Method for Determination of the Asphaltene Solvency Properties of Bitumen, Crude Oil, Condensate and/or Related Products for the Purpose of Calculating Stability, Compatibility for Blending, Fouling, and Processibility (Manual Microscopy
- ASTM D8254-19 Standard Test Method for Flash and Fire Points of Asphalt by Cleveland Open Cup Tester