
【国外标准】 Standard Practice for Preparation of Water Samples with High, Medium, or Low Suspended Solids for Identification and Quantification of Microplastic Particles and Fibers Using Raman Spectroscopy, IR Spectroscopy, or Pyrolysis-GC/MS
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Large volumes of water are required to be sieved for accurate quantification of microplastics. Water with high to medium content of suspended solids can lead to an excess of inorganic and organic background material which can interfere with the ability to conduct reliable analyses. The presence of this background material can often impede the ability to accurately discern, distinguish and identify the number of microplastic particles in solution.5.2 The digestion described in this procedure allows for significant reduction of interfering substances and contaminants, rendering a sample suitable for particle and fiber characterization and identification using either Raman and IR spectroscopic analysis or for polymeric quantification and identification by Pyrolysis-GC/MS.5.3 For water samples with medium to low suspended solids, the oxidation and digestion steps necessary will be dependent upon the type and nature of interfering substances and contaminants and may be determined through simple trial efforts.1.1 This practice provides for the sample preparation of collected water samples with high, medium, or low suspended solids to determine the presence, count, polymer type, and physical characteristics of microplastic particles and fibers. It has been designed for the preparation of samples collected from drinking water, surface waters, wastewater influent and effluent (secondary and tertiary), and marine waters using collection practice (Practice D8332). This practice is not limited to these particular water matrices; however, the applicability of this practice to other aqueous matrices must be demonstrated.1.2 This practice consists of a wet peroxide oxidation followed by progressive enzymatic digestion to the extent necessary to remove interfering organic constituents such as cellulose, lipids and chitin that are typically found in abundance in water matrices of samples with high to medium suspended solids such as wastewater influent. For water samples with low suspended solids, such as but not limited to drinking water and tertiary treated wastewater, the oxidation and digestion steps may not be necessary.1.3 Water samples prepared using this practice are suitable for analysis utilizing either Pyrolysis-GC/MS methods for qualitative identification and mass quantitation, or IR spectroscopy or Raman spectroscopy for identifying the quantity (number count) and composition (polymer type) of microplastic particles. If desired, microplastic particle size and shape may be ascertained with appropriate instruments such as a scanning electron microscope (SEM) and microscopy techniques.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8333-20
标准名称:
Standard Practice for Preparation of Water Samples with High, Medium, or Low Suspended Solids for Identification and Quantification of Microplastic Particles and Fibers Using Raman Spectroscopy, IR Spectroscopy, or Pyrolysis-GC/MS
英文名称:
Standard Practice for Preparation of Water Samples with High, Medium, or Low Suspended Solids for Identification and Quantification of Microplastic Particles and Fibers Using Raman Spectroscopy, IR Spectroscopy, or Pyrolysis-GC/MS标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D8223-19 Standard Practice for Evaluation of Fire-Retardant Treated Laminated Veneer Lumber
- ASTM D8225-19 Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature
- ASTM D8226-21ae1 Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition Engine
- ASTM D8227-20 Standard Test Method for Determining the Coefficient of Friction of Synchronizer Lubricated by Mechanical Transmission Fluids (MTF) Using a High-Frequency, Linear-Oscillation (SRV) Test Machine
- ASTM D823-18(2022) Standard Practices for Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels
- ASTM D8232-18 Standard Test Procedures for Measuring the Inclination of Deep Foundations
- ASTM D8236-18 Standard Practice for Preparing an Equilibrium Liquid/Vapor Sample of Live Crude Oil, Condensates, or Liquid Petroleum Products Using a Manual Piston Cylinder for Subsequent Liquid Analysis or Gas Analysis
- ASTM D8239-23 Standard Specification for Performance-Graded Asphalt Binder Using the Multiple Stress Creep and Recovery (MSCR) Test
- ASTM D8240-22e1 Standard Specification for Less-Flammable Synthetic Ester Liquids Used in Electrical Apparatus
- ASTM D8241/D8241M-19 Standard Tables of Body Measurements for Young Men Type, Size Range 32 – 48
- ASTM D8243-19 Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method
- ASTM D8247-19 Standard Test Method for Determination of Total Fluorine and Total Chlorine in Coal by Oxidative Pyrohydrolytic Combustion Followed by Ion Chromatography Detection
- ASTM D8252-23 Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry
- ASTM D8253-21 Standard Test Method for Determination of the Asphaltene Solvency Properties of Bitumen, Crude Oil, Condensate and/or Related Products for the Purpose of Calculating Stability, Compatibility for Blending, Fouling, and Processibility (Manual Microscopy
- ASTM D8254-19 Standard Test Method for Flash and Fire Points of Asphalt by Cleveland Open Cup Tester