
【国外标准】 Standard Guide for Assessment of Measurement Uncertainty in Fire Tests
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Users of fire test data often need a quantitative indication of the quality of the data presented in a test report. This quantitative indication is referred to as the “measurement uncertainty”. There are two primary reasons for estimating the uncertainty of fire test results.5.1.1 ISO/IEC 17025 requires that competent testing and calibration laboratories include uncertainty estimates for the results that are presented in a report.5.1.2 Fire safety engineers need to know the quality of the input data used in an analysis to determine the uncertainty of the outcome of the analysis.1.1 This guide covers the evaluation and expression of uncertainty of measurements of fire test methods developed and maintained by ASTM International, based on the approach presented in the GUM. The use in this process of precision data obtained from a round robin is also discussed.1.2 The guidelines presented in this standard can also be applied to evaluate and express the uncertainty associated with fire test results. However, it may not be possible to quantify the uncertainty of fire test results if some sources of uncertainty cannot be accounted for. This problem is discussed in more detail in Appendix X2.1.3 Application of this guide is limited to tests that provide quantitative results in engineering units. This includes, for example, methods for measuring the heat release rate of burning specimens based on oxygen consumption calorimetry, such as Test Method E1354.1.4 This guide does not apply to tests that provide results in the form of indices or binary results (for example, pass/fail). For example, the uncertainty of the Flame Spread Index obtained according to Test Method E84 cannot be determined.1.5 In some cases additional guidance is required to supplement this standard. For example, the expression of uncertainty of heat release rate measurements at low levels requires additional guidance and uncertainties associated with sampling are not explicitly addressed.1.6 This fire standard cannot be used to provide quantitative measures.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2536-21
标准名称:
Standard Guide for Assessment of Measurement Uncertainty in Fire Tests
英文名称:
Standard Guide for Assessment of Measurement Uncertainty in Fire Tests标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM E2535-07(2018) Standard Guide for Handling Unbound Engineered Nanoscale Particles in Occupational Settings
- 下一篇: ASTM E2538-06(2011) Standard Practice for Defining and Implementing Pharmacotherapy Information Services within the Electronic Health Record (EHR) Environment and Networked Architectures (Withdrawn 2020)
- 推荐标准
- ASTM D8223-19 Standard Practice for Evaluation of Fire-Retardant Treated Laminated Veneer Lumber
- ASTM D8225-19 Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature
- ASTM D8226-21ae1 Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition Engine
- ASTM D8227-20 Standard Test Method for Determining the Coefficient of Friction of Synchronizer Lubricated by Mechanical Transmission Fluids (MTF) Using a High-Frequency, Linear-Oscillation (SRV) Test Machine
- ASTM D823-18(2022) Standard Practices for Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels
- ASTM D8232-18 Standard Test Procedures for Measuring the Inclination of Deep Foundations
- ASTM D8236-18 Standard Practice for Preparing an Equilibrium Liquid/Vapor Sample of Live Crude Oil, Condensates, or Liquid Petroleum Products Using a Manual Piston Cylinder for Subsequent Liquid Analysis or Gas Analysis
- ASTM D8239-23 Standard Specification for Performance-Graded Asphalt Binder Using the Multiple Stress Creep and Recovery (MSCR) Test
- ASTM D8240-22e1 Standard Specification for Less-Flammable Synthetic Ester Liquids Used in Electrical Apparatus
- ASTM D8241/D8241M-19 Standard Tables of Body Measurements for Young Men Type, Size Range 32 – 48
- ASTM D8243-19 Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method
- ASTM D8247-19 Standard Test Method for Determination of Total Fluorine and Total Chlorine in Coal by Oxidative Pyrohydrolytic Combustion Followed by Ion Chromatography Detection
- ASTM D8252-23 Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry
- ASTM D8253-21 Standard Test Method for Determination of the Asphaltene Solvency Properties of Bitumen, Crude Oil, Condensate and/or Related Products for the Purpose of Calculating Stability, Compatibility for Blending, Fouling, and Processibility (Manual Microscopy
- ASTM D8254-19 Standard Test Method for Flash and Fire Points of Asphalt by Cleveland Open Cup Tester