
【国外标准】 Standard Practice for Descaling and Cleaning Zirconium and Zirconium Alloy Surfaces
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
This practice covers a cleaning and de-scaling procedure useful to producers, users, and fabricators of zirconium and zirconium alloys for the removal of ordinary shop soils, oxides, and scales resulting from heat treatment operations and foreign substances present as surface contaminants. Grease, oil, and lubricants employed in machining, forming, and fabricating operations on zirconium and zirconium alloys should be removed by employing one of the methods or a combination of methods: alkaline or emulsion soak-type cleaners, ultrasonic cleaning, acetone, citrus based cleaners, or safety solvent immersion washing or vapor degreasing, or electrolytic alkaline cleaning system. Mechanical de-scaling methods such as sandblasting, shot blasting, and vapor blasting may be used to remove hot work scales and lubricants from zirconium surfaces if followed by thorough conditioning and cleaning. Aluminum oxide, silicon carbide, silica sand, zircon sand, and steel grit are acceptable media for mechanical de-scaling. Recommended post treatment of shot or abrasive blasted zirconium surfaces may include acid pickling to ensure complete removal of metallic iron, oxide, scale, and other surface contaminants. Visual inspection of material cleaned in accordance with this practice should show no evidence of paint, oil, grease, glass, graphite, lubricant, scale, abrasive, iron, or other forms of contamination.1.1 This practice covers a cleaning and descaling procedure useful to producers, users, and fabricators of zirconium and zirconium alloys for the removal of ordinary shop soils, oxides, and scales resulting from heat treatment operations and foreign substances present as surface contaminants.1.2 It is not intended that these procedures become mandatory for removal of any of the indicated soils but rather serve as a guide when zirconium and zirconium alloys are being processed in the wrought, cast, or fabricated form.1.3 It is the intent that these soils be removed prior to chemical milling, joining, plating, welding, fabrication, and in any situation where foreign substances interfere with the corrosion resistance, stability, and quality of the finished product.1.4 Unless a single unit is used, for example, solution concentrations in g/l, the values stated in either inch-pound or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. SI values cannot be mixed with inch-pound values.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Sections 3 and 7.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM B614-16(2021)
标准名称:
Standard Practice for Descaling and Cleaning Zirconium and Zirconium Alloy Surfaces
英文名称:
Standard Practice for Descaling and Cleaning Zirconium and Zirconium Alloy Surfaces标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D8223-19 Standard Practice for Evaluation of Fire-Retardant Treated Laminated Veneer Lumber
- ASTM D8225-19 Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature
- ASTM D8226-21ae1 Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition Engine
- ASTM D8227-20 Standard Test Method for Determining the Coefficient of Friction of Synchronizer Lubricated by Mechanical Transmission Fluids (MTF) Using a High-Frequency, Linear-Oscillation (SRV) Test Machine
- ASTM D823-18(2022) Standard Practices for Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels
- ASTM D8232-18 Standard Test Procedures for Measuring the Inclination of Deep Foundations
- ASTM D8236-18 Standard Practice for Preparing an Equilibrium Liquid/Vapor Sample of Live Crude Oil, Condensates, or Liquid Petroleum Products Using a Manual Piston Cylinder for Subsequent Liquid Analysis or Gas Analysis
- ASTM D8239-23 Standard Specification for Performance-Graded Asphalt Binder Using the Multiple Stress Creep and Recovery (MSCR) Test
- ASTM D8240-22e1 Standard Specification for Less-Flammable Synthetic Ester Liquids Used in Electrical Apparatus
- ASTM D8241/D8241M-19 Standard Tables of Body Measurements for Young Men Type, Size Range 32 – 48
- ASTM D8243-19 Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method
- ASTM D8247-19 Standard Test Method for Determination of Total Fluorine and Total Chlorine in Coal by Oxidative Pyrohydrolytic Combustion Followed by Ion Chromatography Detection
- ASTM D8252-23 Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry
- ASTM D8253-21 Standard Test Method for Determination of the Asphaltene Solvency Properties of Bitumen, Crude Oil, Condensate and/or Related Products for the Purpose of Calculating Stability, Compatibility for Blending, Fouling, and Processibility (Manual Microscopy
- ASTM D8254-19 Standard Test Method for Flash and Fire Points of Asphalt by Cleveland Open Cup Tester