
【国外标准】 Standard Test Method for Determination of Wear Metals and Contamination Elements in Used Industrial Oils by Sweeping Flat Electrode Atomic Emission Spectrometry
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Used Industrial Oil—The detection of large particles are important inputs for used industrial lubricant condition mornitoring. For wear metals, these particles, in size, are represented by those between 20 μm and 50 μm in engine oil, 80 μm or greater in gear-box oil. In desert or windy areas, large sand and dust particles can enter in-service lubricant. The concentrations contributed from large particles can be more sensitive to serious or catastrophic failure of industrial equipment than those from 10 μm or less. In spectroscopic analysis, excluding large particles significantly under-reports the concentrations of wear and contamination elements. The corresponding results may not represent the actual state of in-service lubricant. Because this test method posts less limitation on the size of wear metal particles while still reporting normal fine wear particles, it provides a means to assess wear and contamination elements in a comprehensive range of the size of particulates and raises the fidelity of spectroscopic analysis of in-service lubricant.5.2 Non-suspendable Particles in Used Industrial Oil—The increase of non-suspendable particles suggests excessive wear or poor sealing of machinery, or both. Large amounts of such particulate in industrial oil bulk itself are harmful to moving parts of machinery. This test method provides another means to identify the presence or absence of the non-suspendable particles for machinery condition monitoring.1.1 This test method covers the determination of wear metals and contaminants in used industrial oils by sweeping flat electrode atomic emission spectroscopy (SFE-AES).21.2 Industrial oil includes lubricant oil, gear box oil, hydraulic fluid, compressor oil, turbine oil, synthetic oils, and other petroleum oils.1.3 Method working range for every element is evaluated by equations in 15.2.1 and tabulated in Table 6.1.4 Though this technique is designed to analyze non-suspended particles in lubricant samples, the precision statements published here were established solely from homogeneous oil samples per Practice D6300 requirements. Non-suspended particles, which are inhomogeneous by nature, were not sampled and evaluated for deriving precision statements for this test method (see Annex A1).1.5 This test method provides a quick indication for abnormal wear and the presence of contamination in new or used industrial oils by immediately reporting:1.5.1 Normal fine particles of specific wear metals;1.5.2 Non-suspendable particles of specific wear metals and of contamination elements;1.5.3 Less populated large particles (10 μm to 50 μm) of specific wear metals;1.5.4 Contamination elements; and1.5.5 Additive elements.1.6 This test method uses oil-soluble elements for calibration and does not purport to relate quantitatively the values determined as insoluble particles to the dissolved metals. Analytical results are particle size dependent and low results may be obtained for those elements present in used oil samples as large particles (referenced by Test Methods D5185 and D6595).1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8315-20
标准名称:
Standard Test Method for Determination of Wear Metals and Contamination Elements in Used Industrial Oils by Sweeping Flat Electrode Atomic Emission Spectrometry
英文名称:
Standard Test Method for Determination of Wear Metals and Contamination Elements in Used Industrial Oils by Sweeping Flat Electrode Atomic Emission Spectrometry标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D8223-19 Standard Practice for Evaluation of Fire-Retardant Treated Laminated Veneer Lumber
- ASTM D8225-19 Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature
- ASTM D8226-21ae1 Standard Test Method for Measurement of Effects of Automotive Engine Oils on Fuel Economy of Passenger Cars and Light-Duty Trucks in Sequence VIF Spark Ignition Engine
- ASTM D8227-20 Standard Test Method for Determining the Coefficient of Friction of Synchronizer Lubricated by Mechanical Transmission Fluids (MTF) Using a High-Frequency, Linear-Oscillation (SRV) Test Machine
- ASTM D823-18(2022) Standard Practices for Producing Films of Uniform Thickness of Paint, Coatings and Related Products on Test Panels
- ASTM D8232-18 Standard Test Procedures for Measuring the Inclination of Deep Foundations
- ASTM D8236-18 Standard Practice for Preparing an Equilibrium Liquid/Vapor Sample of Live Crude Oil, Condensates, or Liquid Petroleum Products Using a Manual Piston Cylinder for Subsequent Liquid Analysis or Gas Analysis
- ASTM D8239-23 Standard Specification for Performance-Graded Asphalt Binder Using the Multiple Stress Creep and Recovery (MSCR) Test
- ASTM D8240-22e1 Standard Specification for Less-Flammable Synthetic Ester Liquids Used in Electrical Apparatus
- ASTM D8241/D8241M-19 Standard Tables of Body Measurements for Young Men Type, Size Range 32 – 48
- ASTM D8243-19 Standard Test Method for Determination of APS Reductase to Estimate Sulfate Reducing Bacterial Bioburdens in Water – Enzyme-Linked Immunosorbent Assay Method
- ASTM D8247-19 Standard Test Method for Determination of Total Fluorine and Total Chlorine in Coal by Oxidative Pyrohydrolytic Combustion Followed by Ion Chromatography Detection
- ASTM D8252-23 Standard Test Method for Vanadium and Nickel in Crude and Residual Oil by X-ray Spectrometry
- ASTM D8253-21 Standard Test Method for Determination of the Asphaltene Solvency Properties of Bitumen, Crude Oil, Condensate and/or Related Products for the Purpose of Calculating Stability, Compatibility for Blending, Fouling, and Processibility (Manual Microscopy
- ASTM D8254-19 Standard Test Method for Flash and Fire Points of Asphalt by Cleveland Open Cup Tester