微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This test method specifies test procedures that can easily be used for field testing of equine surfaces. It is a test method that can be consistently applied to any equine surface and can quantitatively measure functional properties and track surface performance changes over time.1.1 This test method covers the specification for the measurement of the functional properties of equine surfaces; cushioning, impact, firmness, responsiveness and uniformity. This test method specifies test procedures that are appropriate for field testing of equine surfaces. This test method defines the functional properties of equine surfaces. This test method does not specify safety criteria. The extent to which functional properties contribute to individual injury risk is not known.1.2 Where appropriate values are stated in SI units.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This wipe sampling and indirect analysis test method is used for the general testing of surfaces for asbestos. It is used to assist in the evaluation of surfaces in buildings, such as ceiling tiles, shelving, electrical components, duct work, and so forth. This test method provides an index of the concentration of asbestos structures per unit area sampled as derived from a quantitative measure of the number of asbestos structures detected during analysis.5.1.1 This test method does not describe procedures or techniques required for the evaluation of the safety or habitability of buildings with asbestos-containing materials, or compliance with federal, state, or local regulations or statutes. It is the user's responsibility to make these determinations.5.1.2 At present, a single direct relationship between asbestos sampled from a surface and potential human exposure does not exist. Accordingly, the user should consider these data in relationship to other available information (for example, air sampling data) in their evaluation.5.2 One or more large asbestos-containing particles dispersed during sample preparation may result in large asbestos surface loading results in the TEM analyses of that sample. It is, therefore, recommended that multiple replicate independent samples be secured in the same area, and that a minimum of three such samples be analyzed by the entire procedure.1.1 This test method covers a procedure to identify asbestos in samples wiped from surfaces and to provide an estimate of the concentration of asbestos reported as the number of asbestos structures per unit area of sampled surface. The procedure outlined in this test method employs an indirect sample preparation technique. It is intended to disperse aggregated asbestos into fundamental fibrils, fiber bundles, clusters, or matrices. However, as with all indirect sample preparation techniques, the asbestos observed for quantification may not represent the physical form of the asbestos as sampled. More specifically, the procedure described neither creates nor destroys asbestos, but it may alter the physical form of the mineral fiber aggregates.1.2 This test method describes the equipment and procedures necessary for wipe sampling of surfaces for levels of asbestos structures. The sample is collected onto a particle-free wipe material (wipe) from the surface of a sampling area that may contain asbestos.1.2.1 The collection efficiency of this wipe sampling technique is unknown and will vary among substrates. Properties influencing collection efficiency include surface texture, adhesiveness, and other factors.1.2.2 This test method is generally applicable for an estimate of the surface loading of asbestos structures starting from approximately 1000 asbestos structures per square centimetre.1.3 Asbestos identification by transmission electron microscopy (TEM) is based on morphology, electron diffraction (ED), and energy dispersive X-ray analysis (EDXA).1.4 This test method allows determination of the type(s) of asbestos fibers present.1.4.1 This test method cannot always discriminate between individual fibers of the asbestos and nonasbestos analogues of the same amphibole mineral.1.4.2 There is no lower limit to the dimensions of asbestos fibers that can be detected. However, in practice, the lower limit to the dimensions of asbestos fibers, that can be detected, is variable and dependent on individual microscopists. Therefore, a minimum length of 0.5 μm has been defined as the shortest fiber to be incorporated in the reported results.1.5 The values stated in SI units are to be regarded as standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Data obtained from the procedure of this test method are indicative of the relative abrasiveness of fabric or carpet type synthetic playing surfaces.1.1 This test method is applicable to both laboratory and field measurement of synthetic turf surfaces used for sports.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM F1637-21 Standard Practice for Safe Walking Surfaces Active 发布日期 :  1970-01-01 实施日期 : 

4.1 This practice addresses elements along and in walkways including floors and walkway surfaces, sidewalks, short flight stairs, gratings, wheel stops, and speed bumps. Swimming pools, bath tubs, showers, natural walks, and unimproved paths are beyond the scope of this practice.1.1 This practice covers design and construction guidelines and minimum maintenance criteria for new and existing buildings and structures. This practice is intended to provide reasonably safe walking surfaces for pedestrians wearing ordinary footwear. These guidelines may not be adequate for those with certain mobility impairments.1.2 Conformance with this practice will not alleviate all hazards; however, conformance will reduce certain pedestrian risks.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Wax binders are critical for synthetic equestrian surfaces to stay together at consistencies desired. Surfaces are designed to prevent injuries and the wax binders are critical to ensure that this happens. Soxhlet extraction of wax binder is an efficient method to determine the amount of wax binder present in a synthetic equestrian surface.1.1 Equine surfaces containing wax-oil based coatings/binders must be treated and cleaned prior to the subsequent material tests described for sand and fiber surfaces. Note: skip this test for surfaces that are not wax coated.1.2 The procedures described for wax separation employ Soxhlet extraction to remove wax content from the surface and to calculate crude wax percentage in the surface. Procedures are based upon the Soxhlet extraction method, which has been modified for use on equestrian surfaces by Lab/Cor Materials, Seattle, Washington, USA.21.3 If synthetic fibers are present, then fiber solubility will need to be considered prior to Soxhlet extraction to ensure that the Soxhlet procedure will not damage fiber integrity.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Solar reflectance and thermal emittance are important factors affecting surface and near-surface ambient air temperature. Surfaces with low solar reflectance, absorb a high fraction of the incoming solar energy. A fraction of this absorbed energy is conducted into ground and buildings, a fraction is convected to air (leading to higher air temperatures), and a fraction is radiated to the sky. For equivalent conditions, the lower the emissivity of a surface the higher its steady-state temperature. Surfaces with low emissivity cannot effectively radiate to the sky and, therefore, get hot. Determination of solar reflectance and thermal emittance, and subsequent calculation of the relative temperature of the surfaces with respect to black and white reference temperature (defined as Solar Reflectance Index, SRI), may help designers and consumers to choose the proper materials to make their buildings and communities energy efficient. The method described here gives the SRI of surfaces based on measured solar reflectances and thermal emissivities of the surfaces.1.1 This practice covers the calculation of the Solar Reflectance Index (SRI) of horizontal and low-sloped opaque surfaces at standard conditions. The method is intended to calculate SRI for surfaces with emissivity greater than 0.1.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Rutted pavement surfaces may have an adverse influence on vehicle handling characteristics and may impede surface drainage, which may reduce friction properties and contribute to hydroplaning. Rutting indicates deformation or wear of materials in the pavement and may be indicative of problems such as asphalt flow, consolidation, shear, or loss of pavement materials.4.2 The rut-depth value obtained using this test method may not correlate well with values obtained using other methods.1.1 This test method describes the procedure for the measurement of the depth of the rut at a chosen location in a pavement surface using a straightedge and a gauge.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This practice covers a cleaning and de-scaling procedure useful to producers, users, and fabricators of zirconium and zirconium alloys for the removal of ordinary shop soils, oxides, and scales resulting from heat treatment operations and foreign substances present as surface contaminants. Grease, oil, and lubricants employed in machining, forming, and fabricating operations on zirconium and zirconium alloys should be removed by employing one of the methods or a combination of methods: alkaline or emulsion soak-type cleaners, ultrasonic cleaning, acetone, citrus based cleaners, or safety solvent immersion washing or vapor degreasing, or electrolytic alkaline cleaning system. Mechanical de-scaling methods such as sandblasting, shot blasting, and vapor blasting may be used to remove hot work scales and lubricants from zirconium surfaces if followed by thorough conditioning and cleaning. Aluminum oxide, silicon carbide, silica sand, zircon sand, and steel grit are acceptable media for mechanical de-scaling. Recommended post treatment of shot or abrasive blasted zirconium surfaces may include acid pickling to ensure complete removal of metallic iron, oxide, scale, and other surface contaminants. Visual inspection of material cleaned in accordance with this practice should show no evidence of paint, oil, grease, glass, graphite, lubricant, scale, abrasive, iron, or other forms of contamination.1.1 This practice covers a cleaning and descaling procedure useful to producers, users, and fabricators of zirconium and zirconium alloys for the removal of ordinary shop soils, oxides, and scales resulting from heat treatment operations and foreign substances present as surface contaminants.1.2 It is not intended that these procedures become mandatory for removal of any of the indicated soils but rather serve as a guide when zirconium and zirconium alloys are being processed in the wrought, cast, or fabricated form.1.3 It is the intent that these soils be removed prior to chemical milling, joining, plating, welding, fabrication, and in any situation where foreign substances interfere with the corrosion resistance, stability, and quality of the finished product.1.4 Unless a single unit is used, for example, solution concentrations in g/l, the values stated in either inch-pound or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. SI values cannot be mixed with inch-pound values.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Sections 3 and 7.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

AbstractThese test methods cover determination of the total normal emittance of surfaces by means of portable, inspection-meter instruments. At least two different types of instruments are commercially available for performing this measurement. Test Method A uses an instrument which measures radiant energy reflected from the specimen and Test Method B utilizes an instrument which measures radiant energy emitted from the specimen. Both test methods are limited in accuracy by the degree to which the emittance properties of calibrating standards are known and by the angular emittance characteristics of the surfaces being measure. Test Method A is normally subject to a small error caused by the difference in wavelength distributions between the radiant energy emitted by the two cavities at different temperatures, and that emitted by a blackbody at the specimen temperature. Test Method B also has nongray errors since the detector is not at absolute zero temperature. Test Method A is subject to small errors that may be introduced if the orientation of the sensing component is changed between calibration and specimen measurements. This type of error results from minor changes in alignment of the optical system. Test Method A is subject to error when curved specular surfaces of less than about a certain radius are measured. These errors can be minimized by using calibrating standards that have the same radius of curvature as the test surface. Test Method A can measure reflectance on specimens that are either opaque or semi-transparent in the wavelength region of interest. However, if emittance is to be derived from the reflectance data on a semi-transparent specimen, a correction must be made for transmittance losses. Test Method B is subject to several possible significant errors. These may be due to variation of the test surface temperature during measurements, differences in temperature between the calibrating standards and the test surfaces, changes in orientation of the sensing component between calibration and measurement, errors due to irradiation of the specimen with thermal radiation by the sensing component, and errors due to specimen curvature. Test Method B is limited to emittance measurements on specimens that are opaque to infrared radiation in the wavelength region of interest. 1.1 These test methods cover determination of the total normal emittance (Note 1) of surfaces by means of portable, as well as desktop, inspection-meter instruments. Note 1: Total normal emittance (εN) is defined as the ratio of the normal radiance of a specimen to that of a blackbody radiator at the same temperature. The equation relating εN to wavelength and spectral normal emittance [εN(λ)] is where: L b(λ, T)   =   Planck's blackbody radiation function = c1λ−5(ec2/λT − 1)−1, c1   =   3.7415 × 10−16W·m 2, c2   =   1.4388 × 10−2 m·K, T   =   absolute temperature, K, λ   =   wavelength, m,   =   σT4, and σ   =   Stefan-Boltzmann constant = 5.66961 × 10 −8 W·m−2·K−4 1.2 These test methods are intended for measurements on large surfaces, or small samples, or both, when rapid measurements must be made and where a nondestructive test is desired. They are particularly useful for production control tests. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method shall be used to determine if a chemical intended for use as a non-food contact sanitizer or as a one-step cleaner-sanitizer provides percent reductions of the selected test organisms on treated carriers as compared to control.1.1 This test method is used to evaluate the antimicrobial efficacy of sanitizers on precleaned, inanimate, hard, nonporous, non-food contact surfaces against Staphylococcus aureus, or Klebsiella pneumoniae or Klebsiella aerogenes, or a combination thereof. Appropriate modifications to the method may be required when testing organisms not specified herein. When utilizing test surfaces not described herein (see Test Method E2274) or when evaluating spray-based or towelette-based antimicrobial products, modifications may also be required.1.2 This test method may also be used to evaluate the antimicrobial efficacy of one-step cleaner-sanitizer formulations recommended for use on lightly soiled, inanimate, nonporous, non-food contact surfaces.1.3 It is the responsibility of the investigator to determine whether Good Laboratory Practices (GLP) are required and to follow them where appropriate (see section 40 CFR, 160 or as revised.)1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard may involve hazardous materials, chemicals and microorganisms and should be performed only by persons who have had formal microbiological training. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This test method may be used to measure the effectiveness of water resistant treatments of light leathers such as glove and garment leather that have no finish. It can also be used to measure the water absorption capacity of insole materials thus providing a gauge for predicting foot comfort or discomfort.1.1 This test method covers determining the degree of wettability of a leather surface. This test method does not apply to wet blue.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 In form-fill operations, sealed areas of packages are frequently subject to disruptive forces while still hot. If the hot seals have inadequate resistance to these forces, breakage can occur during the packaging process. These test methods measure hot seal strength and can be used to characterize and rank materials in their ability to perform in commercial applications where this quality is critical.1.1 These two test methods cover laboratory measurement of the strength of heatseals formed between thermoplastic surfaces of flexible webs, immediately after a seal has been made and before it cools to ambient temperature (hot tack strength).1.2 These test methods are restricted to instrumented hot tack testing, requiring a testing machine that automatically heatseals a specimen and immediately determines strength of the hot seal at a precisely measured time after conclusion of the sealing cycle. An additional prerequisite is that the operator shall have no influence on the test after the sealing sequence has begun. These test methods do not cover non-instrumented manual procedures employing springs, levers, pulleys and weights, where test results can be influenced by operator technique.1.3 Two variations of the instrumented hot tack test are described in these test methods, differing primarily in two respects: (a) rate of grip separation during testing of the sealed specimen, and (b) whether the testing machine generates the cooling curve of the material under test, or instead makes a measurement of the maximum force observed following a set delay time. Both test methods may be used to test all materials within the scope of these test methods and within the range and capacity of the machine employed. They are described in Section 4.1.4 SI units are preferred and shall be used in referee decisions. Values stated herein in inch-pound units are to be regarded separately and may not be exact equivalents to SI units. Therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. The operator of the equipment is to be aware of pinch points as the seal jaws come together to make a seal, hot surfaces of the jaws, and sharp instruments used to cut specimens. It is recommended that the operator review safety precautions from the equipment supplier.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This practice provides a methodology for measuring the duration of wetness on a sensing element mounted on a surface in a location of interest. Experience has shown that the sensing element reacts to factors that cause wetness in the same manner as the surface on which it is mounted.3.2 Surface moisture plays a critical role in the corrosion of metals and the deterioration of nonmetallics. The deposition of moisture on a surface can be caused by atmospheric or climatic phenomena such as direct precipitation of rain or snow, condensation, the deliquescence (or at least the hygroscopic nature) of corrosion products or salt deposits on the surface, and others. A measure of atmospheric or climatic factors responsible for moisture deposition does not necessarily give an accurate indication of the TOW. For example, the surface temperature of an object may be above or below both the ambient and the dew point temperatures. As a result condensation will occur without an ambient meteorological indication that a surface has been subjected to a condensation cycle.3.3 Structural design factors and orientation can be responsible for temperature differences and the consequent effect on TOW as discussed in 4.2. As a result, some surfaces may be shielded from rain or snow fall; drainage may be facilitated or prevented from given areas, and so forth. Therefore various components of a structure can be expected to perform differently depending on mass, orientation, air flow patterns, and so forth. A knowledge of TOW at different points on large structures can be useful in the interpretation of corrosion or other testing results.3.4 In order to improve comparison of data obtained from test locations separated on a macrogeographical basis, a uniform orientation of sensor elements boldly exposed in the direction of the prevailing wind, at an angle of 30° above the horizontal is recommended. Elevation of the sensor above ground level should be recorded.3.5 Although this method does not develop relationships between TOW and levels of ambient relative humidity (RH), long term studies have been carried out to show that the TOW experienced annually by panels exposed under standard conditions is equivalent to the cumulative time the RH is above a given threshold value.2 This time value varies with location and with other factors. Probability curves have been developed for top and bottom surfaces of a standard panel at one location which show the probable times that a surface will be wet as a percentage of the cumulative time the relative humidity is at specific levels.3 If needed, it should be possible to develop similar relationships to deal with other exposure conditions.1.1 This practice covers a technique for monitoring time-of-wetness (TOW) on surfaces exposed to cyclic atmospheric conditions which produce depositions of moisture.1.2 The practice is also applicable for detecting and monitoring condensation within a wall or roof assembly and in test apparatus.1.3 Exposure site calibration or characterization can be significantly enhanced if TOW is measured for comparison with other sites, particularly if this data is used in conjunction with other site-specific instrumentation techniques.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The determination of lead and cadmium release from porcelain enamel surfaces was formerly of interest only to manufacturers of porcelain enamel cookware and similar food service products. Food contact surfaces of these container-type products have been evaluated using a test procedure similar to Test Method C738. Recently, however, there has been a need to measure lead and cadmium release from flat or curved porcelain enamel surfaces that are not capable of being evaluated by a test similar to Test Method C738.1.1 This test method covers the precise determination of lead and cadmium extracted by acetic acid from porcelain enamel surfaces.1.2 Values stated in SI units are to be regarded as the standard. Inch-pound units are given for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 To test the shear strength of a materials describing how the material resists sliding of surface layers. Data from these tests are used to calculate the friction angle and cohesion of a surface sample. This test can be used to help determine if a material falls within a suitable for equine sports surfaces.1.1 This adapted test method covers the determination of strength and stress-strain relationships of a cylindrical specimen of a compacted, drained cohesive natural or synthetic soil surface used in equine sports surfaces. Specimens are isotropically consolidated and sheared in compression at a constant rate of axial deformation (strain controlled).1.2 The shear strength of an equine sports surface material describes the resistance of the material to sliding of the surface layers. Shear strength influences both slide and penetration of the hoof in the track surface. It is generally accepted that a small amount of slide on impact is desirable (1-3).2 However, the surface must have sufficient shear strength to support the horse during propulsion (1-5). Thus, an optimal shear strength would be expected for an equestrian surface.1.3 To determine the shear strength of an equine sports surface, a representative dirt or synthetic sample is placed into a cylindrical cell and a vertical load is applied. Shear strength is measured as per the procedures outlined in Test Method D4767 for lab-consolidated samples. This ASTM standard was adapted by Racing Surfaces Testing Laboratory for the drained condition to more accurately model the conditions of an equestrian surface.1.4 Dirt samples are tested over a range of forming moisture contents to determine the maximum bulk density and optimal forming moisture content for a given energy input. The dirt samples are then compacted at this optimal moisture content. The maximum stress failure criteria is assumed and results are presented as the failure stress at 15 psi confining pressure versus sample forming moisture content, along with friction angle and cohesion.1.5 Synthetic samples with good drainage are tested at a 4% forming moisture content, and over a specified range of temperatures. The temperature is controlled using a heated/refrigerated water bath with a triaxial cell cap fitted with a copper coil. Failure criteria is assumed under similar conditions for the dirt surfaces, and results are presented as the failure stress at 15 psi confining pressure versus sample temperature, along with friction angle and cohesion.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
154 条记录,每页 15 条,当前第 2 / 11 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页